Подготовила: Байтемирова Айдана. Твёрдое тело это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости,

Презентация:



Advertisements
Похожие презентации
СТРОЕНИЕ ТРЕХ АГРЕГАТНЫХ СОСТОЯНИЙ ТЕЛА УЧЕНИЦА 10 «А» КЛАССА ДАДАЕВА ЛИАНА.
Advertisements

ТЕМА: «Газообразные, жидкие и твердые вещества» Работу по химии выполнила ученица 10 «Б» класса Салахян Нора.
АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВА УРОК ФИЗИКИ В 10 КЛАССЕ.
Деформация ( от лат. deformatio « искажение ») изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. обратимые.
Металлы, проводники и диэлектрики 12 класс. Ионная связь Рассмотрим образование ионной связи на примере соединения хлорида натрия Na + Cl Na + +Cl + Na.
Агрегатные состояния и кристаллические решетки. СВОЙСТВА: способность (твёрдое тело) или неспособность (жидкость, газ, плазма) сохранять объём и форму.
Агрегатные состояния вещества Твёрдое тело ЖИДКОСТЬГАЗ Фазовые переходы.
Муниципальная общеобразовательная школа 38 суббота, 7 декабря 2013 г.суббота, 7 декабря 2013 г.суббота, 7 декабря 2013 г.суббота, 7 декабря 2013 г.суббота,
Твердые тела и их свойства. Твердые тела – тела, сохраняющие форму и объем в течение длительного времени. Аморфные тела Кристаллические тела МонокристаллыПоликристаллы.
Идеальных кристаллов, в которых все атомы находились бы в положениях с минимальной энергией, практически не существует. Отклонения от идеальной решетки.
Описание дефектов кристаллической структуры в рамках теории упругости.
Волны в среде.. Волна́ изменение состояния среды или физического поля, распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве.
Агрегатные состояния вещества. Работу выполнили: ученицы 8 «А» класса Лицея 10 г.Перми Качкина Ирина и Бородкина Лена.
Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, простая квантовая модель поведения валентных электронов.
Мы живём на поверхности твёрдого тела – земного шара, в домах, построенных из твёрдых тел. Наше тело, хотя и содержит примерно 65% воды(мозг – 80%), тоже.
10 класс Механические свойства твердых тел План урока: 2) Актуализация знаний; 1) Повторение основных понятий о кристаллах и аморфных телах ; 1) Повторение.
В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые.
Лекция 4 ХАРАКТЕРИСТИКИ АКУСТИЧЕСКОГО ПОЛЯ Рассмотрим плоскую гармоническую волну, распространяющуюся в положительном направлении оси, параметры среды.
Работу выполнила учитель : Давыденко Оксана Васильевна Кристаллические решетки.
Строение газообразных, жидких и твёрдых тел
Транксрипт:

Подготовила: Байтемирова Айдана

Твёрдое тело это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия [1].агрегатных состояний вещества жидкости газов плазмы теплового движения атомов колебания [1] Различают кристаллические и аморфные твёрдые тела. Раздел физики, изучающий состав и внутреннюю структуру твёрдых тел, называется физикой твёрдого тела. То, как твёрдое тело меняет форму при воздействиях и движении, изучается отдельной дисциплиной механикой твёрдого (деформируемого) тела. Движением абсолютно твёрдого тела занимается третья наука кинематика твёрдого тела.кристаллические аморфные физики физикой твёрдого тела механикой твёрдого (деформируемого) тела кинематика твёрдого тела Технические приспособления, созданные человеком, используют различные свойства твёрдого тела. В прошлом твёрдое тело применялось как конструкционный материал и в основе употребления лежали непосредственно ощутимые механические свойства как то твёрдость, масса, пластичность, упругость, хрупкость. В современном мире применение твёрдого тела основывается на физических свойствах, которые зачастую обнаруживаются только при лабораторных исследованиях.твёрдостьмассапластичностьупругостьхрупкость

1 Описание 2 Классификация твёрдых веществ 3 Историческая справка 4 Фазовые переходы 5 Физические свойства 5.1 Механические свойства 5.2 Тепловые свойства 5.3 Электрические и магнитные свойства 6 Идеализации твёрдого тела в науках 6.1 В теоретической механике 6.2 В теории упругости 6.3 В теории пластичности

Твёрдые тела могут быть в кристаллическом и аморфном состоянии. Кристаллы характеризуются пространственною периодичностью в расположении равновесных положений атомов [1], которая достигается наличием дальнего порядка [2] и носит название кристаллической решётки. Естественная форма кристаллов правильные многогранники [3]. В аморфных телах атомы колеблются вокруг хаотически расположенных точек [1], у них отсутствует дальний порядок, но сохраняется ближний, при котором молекулы расположены согласованно на расстоянии, сравнимом с их размерами. Частным случаем аморфного состояния является стеклообразное состояние [2]. Согласно классическим представлениям, устойчивым состоянием (с минимумом потенциальной энергии) твёрдого тела является кристаллическое. Аморфное тело находится в метастабильном состоянии и с течением времени должно перейти в кристаллическое состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется. Аморфное тело можно рассматривать как жидкость с очень большой (часто бесконечно большой)вязкостью [2].кристаллическом аморфном [1]дальнего порядка [2]кристаллической решётки многогранники [3] [1]ближний стеклообразное состояние [2]потенциальной энергии мета стабильном состоянии вязкостью [2] Атомы и молекулы, составляющие твёрдое тело, плотно упакованы вместе. Другими словами, молекулы твёрдого тела практически сохраняют своё взаимное положение относительно других молекул [4] и удерживаются между собой межмолекулярным взаимодействием. Атомымолекулы [4]межмолекулярным взаимодействием Многие твёрдые тела содержат в себе кристаллические структуры. В минералогии и кристаллографии под кристаллической структурой подразумевается определённый порядок атомов в кристалле. Кристаллическая структура состоит из элементарных ячеек, набора атомов расположенных в особенном порядке, который периодически повторяется во всех направлениях пространственной решётки. Расстояния между элементами этой решётки в различных направлениях называют параметром этой решётки. Кристаллическая структура и симметричность играют роль в определении множества свойств, таких как спайность кристалла, электронная зонная структура и оптические свойства.минералогии кристаллографии элементарных ячеексимметричностьспайностьоптические При применении достаточной силы любое из этих свойств может быть нарушено, вызывая остаточную деформацию.деформацию Твёрдые тела обладают тепловой энергией, следовательно их атомы совершают колебательное движение. Тем не менее это движение незначительно и не может наблюдаться или быть почувствованным при нормальных условиях.тепловой энергией Свойства твёрдого тела и движение частиц в нём исследуются в разделе физики, который называется физикой твёрдого тела(подраздел физики конденсированных сред). Физика твёрдого тела является самостоятельной научной дисциплиной со специфическими методами исследования и математическим аппаратом. Её развитие диктуется практическими потребностями [2]. В зависимости от объекта исследования физика твёрдого тела делится на физику металлов, полупроводников, магнетиков и других. По методам исследования различают рентгеновский структурный анализ,радиоспектроскопия и тому подобное. Кроме того, присутствует деление, связанное с изучением определённых свойств (механических, тепловых и так далее) [1][2].физики физикой твёрдого тела физики конденсированных сред [2]физику металлов полупроводников магнетиков рентгеновский структурный анализ радиоспектроскопия [1][2] Материаловедение главным образом рассматривает вопросы, связанные со свойствами твёрдых тел, такими как твёрдость, предел прочности, сопротивление материала нагрузкам, а также фазовые превращения. Это значительным образом совпадает с вопросами, изучаемыми физикой твёрдого тела. Химия твёрдого состояния перекрывает вопросы, рассматриваемые обоими этими разделами знаний, но особенно затрагивает вопросы синтезирования новых материалов. Материаловедениетвёрдостьпредел прочности фазовые Химия твёрдого состояния

Электрические и некоторые другие свойства твёрдых тел, в основном, определяются характером движения внешних электронов его атомов [1]. Выделяют пять классов твёрдых тел в зависимости от типа связи между атомами [2] : [1] [2] Ионная связь (например, NaCl). Основными силами являются силы электростатического притяжения. Характерные свойства: в инфракрасной области отражение и поглощение света в инфракрасной области; при низких температурах малая электропроводность: при высоких температурах хорошая ионная проводимость. Ионная связьNaCl Ковалентная связь (например, С (алмаз), Ge, Si). Ковалентная связьалмазGeSi Металлическая связь (например, Cu, Al). Металлическая связьCuAl Молекулярная связь (например, Ar, СН 4 ). Молекулярная связьAr Водородная связь (например, Н 2 О (лёд), H 2 F). Водородная связь лёд По виду зонной структуры твёрдые тела классифицируют на проводники, полупроводники и диэлектрики.зонной структуры проводники полупроводники диэлектрики Проводники зона проводимости и валентная зона перекрываются, таким образом электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твердому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы. Проводники Полупроводники зоны не перекрываются и расстояние между ними составляет менее 4 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток. Полупроводникисобственные Диэлектрики зоны не перекрываются и расстояние между ними составляет более 4 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят. ДиэлектрикиэВ По магнитным свойствам твёрдые тела делятся на диамагнетики, парамагнетики и тела с упорядоченной магнитной структурой [1]. Диамагнетические свойства, которые слабо зависят от агрегатного состояния или температуры, обычно перекрываются парамагнитными, которые являются следствием ориентации магнитных моментов атомов и электронов проводимости. По закону Кюри парамагнитная восприимчивость убывает обратно пропорциональна температуре и при температуре 300 К обычно составляет Парамагнетики переходят в ферромагнетики, антиферромагнетики илиферримагнетики при понижении температуры диамагнетики парамагнетики [1]ферромагнетикиантиферромагнетикиферримагнетики

Несмотря на то, что твёрдые тела (металлы, минералы) исследовались давно, всестороннее изучение и систематизация информации об их свойствах началось с XVII века. Начиная с этого времени был открыт ряд эмпирических законов, которые описывали влияние на твердое тело механических сил, изменения температуры, света, электромагнитных полей и т. д. Были сформулированы:эмпирических законов закон Гука (1678); закон Гука закон Дюлонга Пти (1819); закон Дюлонга Пти закон Ома (1826); закон Ома закон Видемана Франца (1853) и др. закон Видемана Франца Уже в первой половине XIX века были сформулированы основные положения теории упругости, для которой характерно представление о твёрдом теле как о сплошной среде.сплошной среде Целостное представление о кристаллической структуре твёрдых тел, как совокупности атомов, упорядоченное размещение которых в пространстве обеспечивается силами взаимодействия было сформировано Огюстом Браве в 1848 году, хотя первые идеи такого рода высказывались в трактатах Николаса Стено (1669), Рене Жюста Гаюи (1784), Исааком Ньютоном в работе «Математические начала натуральной философии» (1686), в которой рассчитана скорость звука в цепочке упруго связанных частиц, Даниилом Бернулли (1727), Огюстеном Луи Коши (1830) и др.Огюстом Браве Николаса Стено Рене Жюста Гаюи Исааком Ньютоном Математические начала натуральной философии Даниилом Бернулли Огюстеном Луи Коши

При повышении температуры твёрдые тела переходят в жидкое или газообразное состояние. Переход твердого тела в жидкость называется плавлением, а переход в газообразное состояние, минуя жидкое, сублимацией. Переход к твёрдому телу (при понижении температуры) кристаллизация, к аморфной фазе стеклование.плавлениемсублимациейкристаллизациястеклование Существуют также фазовые переходы между твердотельными фазами, при которых изменяется внутренняя структура твёрдых тел, становясь упорядоченной при понижении температуры. При атмосферном давлении и температуре Т > 0 К все вещества в природе затвердевают. Исключение составляет гелий, для кристаллизации которого необходимо давление 24 атм [2].атмосферном давлениигелий [2]

Под физическими свойствами твёрдых тел понимается их специфическое поведение при воздействии определенных сил и полей. Существует три основных способа воздействия на твёрдые тела, соответствующие трем основным видам энергии: механический, термический и электромагнитный. Соответственно выделяют три основные группы физических свойств.механическийтермическийэлектромагнитный Механические свойства связывают механические напряжения и деформации тела, согласно результатам широких исследований механических и реологических свойств твёрдых тел, выполненных школой академика П. А. Ребиндера, можно разделить на упругие, прочностные, реологические и технологические. Кроме того, при воздействии на твёрдые тела жидкостей или газов оказываются их гидравлические игазодинамические свойства.реологическихП. А. Ребиндерагидравлическиегазодинамические К термическим относят свойства, которые оказываются под воздействием тепловых полей. В электромагнитные свойства условно можно отнести радиационные, проявляющиеся при воздействии на твёрдое тело потоков микрочастиц или электромагнитных волн значительной жесткости (рентгеновских, гамма-лучи). Легчайшим известным твёрдым материалом является аэрогель. Некоторые виды аэрогеля имеют плотность 1.9 мг/см³ или 1.9 кг/м³ (1/530 плотности воды).аэрогельмгкг

В покое твёрдые тела сохраняют форму, но деформируются под воздействием внешних сил. В зависимости от величины приложенной силы деформацияможет быть упругой, пластической или разрушительной. При упругой деформации тело возвращает себе первоначальную форму после снятия приложенных сил. Отзыв твёрдого тела на прилагаемое усилие описывается модулями упругости. Отличительной особенностью твёрдого тела по сравнению с жидкостями и газами является то, что оно сопротивляется не только растяжению и сжатию, а также сдвигу, изгибу и кручению.деформациямодулями упругостисдвигуизгибукручению При пластической деформации начальная форма не сохраняется. Характер деформации зависит также от времени, в течение которого действует внешняя сила. Твёрдое тело может деформироваться упруго при мгновенном действии, но пластически, если внешние силы действуют длительное время. Такое поведение называется ползучестью. Одной из характеристик деформации является твёрдость тела способность сопротивляться проникновению в него других тел.пластической деформациидеформироваться упругоползучестью Каждое твёрдое тело имеет присущий ему порог деформации, после которой наступает разрушение. Свойство твёрдого тела сопротивляться разрушению характеризуется прочностью. При разрушении в твёрдом теле появляются и распространяются трещины, которые в конце концов приводят к разлому.порог деформациипрочностьютрещины К механическим свойствам твёрдого тела принадлежит также его способность проводить звук, который является волной, переносящий локальную деформацию с одного места в другое. В отличие от жидкостей и газов в твёрдом теле могут распространяться не только продольные звуковые волны, но и поперечные, что связано с сопротивлением твёрдого тела деформации сдвига. Скорость звука в твёрдых телах в целом выше, чем в газах, в частности в воздухе, поскольку межатомное взаимодействие гораздо сильнее. Скорость звука в кристаллических твёрдых телах характеризуется анизотропией, то есть зависимости от направления распространения.звуканизотропией

Важнейшим тепловым свойством твёрдого тела является температура плавления температура, при которой происходит переход в жидкое состояние. Другой важной характеристикой плавления является скрытая теплота плавления. В отличие от кристаллов, в аморфных твёрдых телах переход к жидкому состоянию с повышением температуры происходит постепенно. Его характеризуют температурой стеклования температурой, выше которой материал почти полностью теряет упругость и становится очень пластичным.температура плавленияскрытая теплота плавления Изменение температуры вызывает деформацию твёрдого тела, в основном повышение температуры приводит к расширению. Количественно она характеризуется коэффициентом теплового расширения. Теплоемкость твёрдого тела зависит от температуры, особенно при низких температурах, однако в области комнатных температур и выше, множество твёрдых тел имеют примерно постоянную теплоемкость (закон Дюлонга Пти). Переход к устойчивой зависимости теплоемкости от температуры происходит при характерной для каждого материала температуре Дебая. От температуры зависят также другие характеристики твердотельных материалов, в частности механические: пластичность, текучесть, прочность, твёрдость.коэффициентом теплового расширениязакон Дюлонга Птитемпературе Дебая

В зависимости от величины удельного сопротивления твёрдые тела разделяются на проводники и диэлектрики, промежуточное положение между которыми занимают полупроводники. Полупроводники имеют малую электропроводность, однако для них характерно ее рост с температурой. Электрические свойства твёрдых тел связаны с их электронной структурой. Для диэлектриков свойственна щель в энергетическом спектре электронов, которую в случае кристаллических твёрдых тел называют запрещенной зоной. Это область значений энергии, которую электроны в твёрдом теле не могут иметь. В диэлектриках все электронные состояния, ниже щели заполнены, и благодаря принципу Паули электроны не могут переходить из одного состояния в другое, чем обусловлено отсутствие проводимости. Проводимость полупроводников очень сильно зависит от примесей акцепторов идоноров.удельного сопротивлениядиэлектрикиполупроводникищельакцепторовдоноров Существует определенный класс твёрдых тел, для которых характерна ионная проводимость. Эти материалы называют супериониками. В основном этоионные кристаллы, в которых ионы одного сорта могут достаточно свободно двигаться между незыблемой решёткой ионов другого сорта.ионная проводимостьсуперионикамиионные кристаллы При низких температурах для некоторых твёрдых тел свойственна сверхпроводимость способность проводить электрический ток без сопротивления.сверхпроводимость Существует класс твёрдых тел, которые могут иметь спонтанную поляризацию пироэлектрики. Если это свойство характерно только для одной из фаз, что существует в определенном промежутке температур, то такие материалы называются сегнетоэлектриками. Для пьезоэлектриков характерена сильная связь между поляризацией и механической деформацией.пироэлектрикисегнетоэлектрикамипьезоэлектриков Ферромагнетикам свойственно существование спонтанного магнитного момента. Ферромагнетикаммагнитного момента Оптические свойства твёрдых тел очень разнообразны. Металлы в основном имеют высокий коэффициент отражения света в видимой области спектра, много диэлектриков прозрачные, как, например, стекло. Часто цвет того или другого твёрдого тела обусловлен поглощающими свет примесями. Для полупроводников и диэлектриков характерна фотопроводимость увеличение электропроводности при освещении.фотопроводимость

Твёрдые тела, встречающиеся в природе, характеризуются бесконечным множеством разнообразных свойств, которая постоянно пополняются. В зависимости от поставленных перед определённой наукой задач важны лишь отдельные свойства твёрдого тела, другие несущественные. Например, при исследовании прочности стали её магнитные свойства существенного значения не играют.прочности Для простоты изучения реальное тело заменяют идеальным, выделяя лишь важнейшие свойства для рассматриваемого случая. Такой подход, применяемый многими науками, называется абстрагированием. После выделения идеализированного тела с определённым перечнем существенных свойств, строится теория. Достоверность такой теории зависит от того насколько удачно принятая идеализация отражает существенные характеристики объекта. Оценку этому можно дать при сравнении результатов исследований, полученных теоретически на основе идеализированной модели и экспериментально.абстрагированием В теоретической механике Основная статья: Абсолютно твёрдое тело Абсолютно твёрдое тело В теоретической механике идеализированной схемой реального твёрдого тела является абсолютно твёрдое тело, то есть такое, в котором при любых обстоятельствах расстояния между любыми точками являются постоянными не изменяются ни размеры, ни форма тела. В теории упругости Основная статья: Абсолютно упругое тело Абсолютно упругое тело В теории упругости и её прикладном применению сопромату также рассматриваются модели, которые учитывают и абсолютизируют отдельные свойства твёрдого тела. К этим свойствам Принятие условий однородности и сплошности при малых деформациях позволяет применить методы анализа бесконечно малых величин, что существенно упрощает построение теории сопротивления материалов. Считается также, что зависимость между напряжениями и деформациями является линейной (см. Закон Гука).Закон Гука В теории пластичности В теории пластичности модели твёрдого тела основаны на идеализации свойств деформационного упрочнения или свойств текучести твёрдых тел внапряжённо- деформированном состоянии.теории пластичностинапряжённо- деформированном состоянии

Деформа́ция (от лат. deformatio «искажение») изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.лат.перемещениематомовмеханическое напряжение Причины отказа механики ПрогибКоррозия Пластическая деформация Усталость материала УдарТрещина ПлавлениеИзнос Шаблон: Просмотр Обсуждение Править ПрогибКоррозия Пластическая деформация Усталость материала УдарТрещина ПлавлениеИзнос ПросмотрОбсуждение Править Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформацииисчезают после окончания действия приложенных сил, а необратимые остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия (другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).Упругие деформации Пластические деформации это необратимые деформации, вызванные изменением напряжений. Деформацииползучести это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств в частности, при холодном деформировании повышается прочность.ползучестипрочность

1 Виды деформации 2 Изучение деформации 3 Причины возникновения деформации твёрдых тел 3 Причины возникновения деформации твёрдых тел 4 Упругая и пластическая деформация 5 Сплошность 6 Простейшая элементарная деформация 7 Измерение деформации

Наиболее простые виды деформации тела в целом: растяжение-сжатие, растяжение-сжатие сдвиг, сдвиг изгиб, изгиб кручение. кручение В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу.растяжениюсдвигу

Деформация физического тела вполне определяется, если известен вектор перемещения каждой его точки.физического телавектор Деформация твёрдых тел в связи со структурными особенностями последних изучаетсяфизикой твёрдого тела, а движения и напряжения в деформируемых твёрдых телах теорией упругости и пластичности. У жидкостей и газов, частицы которых легкоподвижны, исследование деформации заменяется изучением мгновенного распределения скоростей.физикой твёрдого телатеорией упругости и пластичности

Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикция), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил.объёмамагнитострикцияэлектрического зарядапьезоэлектрический эффект

Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки (то есть тело возвращается к первоначальным размерам и форме), и пластической, если после снятия нагрузки деформация не исчезает (или исчезает не полностью).упругой Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела (предел упругости).предел упругости Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.температурыползучестьюрелаксацияупругое последействиемеханизм пластической деформациикристаллах

В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность (то есть способность заполнять весь объём, занимаемый материалом тела, без всяких пустот) является одним из основных свойств, приписываемых реальным телам. Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело. Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.

Измерение деформации производится либо в процессе испытания материалов с целью определения их механических свойств, либо при исследовании сооружения в натуре или на моделях для суждения о величинах напряжений. Упругие деформации весьма малы, и их измерение требует высокой точности. Измерение деформаций называется тензометрией; измерения обычно производятся с помощью тензометров. Кроме того, широко применяются резистивные тензодатчики, поляризационно-оптический метод исследования напряжения, рентгеноструктурный анализ. Для суждения о местных пластических деформациях применяют накатку на поверхности изделия сетки, покрытие поверхности легко растрескивающимся лаком или хрупкими прокладками и т. д.тензометриейтензометровтензодатчикирентгеноструктурный анализлаком

Простейшей элементарной деформацией является относительное удлинение некоторого элемента: