Для специальностей: РВ, МО, ДУ, СУ, РА, ЮПКафедра электроники, доцент Родкина Л.Р. Концепции современного естествознания.

Презентация:



Advertisements
Похожие презентации
Автор: Бобряшова Ирина Александровна, учитель биологии ГОУ СОШ 329.
Advertisements

Самоорганизация в живой и неживой природе. Синергетика.
"энергия совместного действия" (от греч. «син» «со-», «совместно» и «эргос» «действие»)
Биология определяется как совокупность наук о: –Ж–Ж–Ж–Живой природе - Многообразии существовавших и существующих живых организмов –С–С–С–Строении и функции.
Концепции универсального эволюционизма. Эволюционизм-учение об эволюции, которое основывается на том,что нынешнее состояние природы и общества является.
Введение 1.Предмет, задачи и методы общей биологии 2.Уровни организаций живой материи 3.Основные свойства живого.
Значение биологии для понимания единства всего живого Выполнила: Бандорина Е.И. студентка 107 группы.
Тренажёрный тест Биология как наука.. 1. Предметом изучения общей биологии является: Строение и функции организма Природные явления Закономерности развития.
Тема урока: «Биология – наука о живом мире. Общие свойства живых организмов». 9 класс 9 класс.
Системность и самоорганизация. Сущность синергетики и методологическая роль синергетического подхода Синергетика – междисциплинарное направления науки,
Введение Урок 1 Биология – наука о живой природе. Науки, изучающие живую природу. Методы изучения живых организмов.
Повторение темы: Уровни организации живой материи.
Тема урока: «Общие свойства живых организмов». Цель урока: 1. Изучить основные свойства живых организмов. 2. Изучить условия поддержания жизни 3. Изучить.
1.Понятие «бытие». 2. Материальное и идеальное бытие. Основные подходы к пониманию категории «материя». 3. Основные черты материи: движение, пространство.
Биология как наука. Метод научного познания.. Краткая история развития биологии. oБиология – наука о жизни. oЖизнь – это способ существования белковых.
Специфика живого.. Предмет изучения, задачи и методы биологии. Биология – совокупность или система наук о живых системах. Предмет изучения биологии –
О каком методе исследования идет речь (выберите из списка): О каком методе исследования идет речь (выберите из списка): Моделирование, сравнительный, описательный,
1 МАГИСТЕРСКАЯ ПРОГРАММА «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ЭКОЛОГИИ И ПРИРОДОПОЛЬЗОВАНИИ» Математические методы и модели в агроэкологии.
Уровни организации жизни. Жизнь – охватывает совокупность всех живых организмов на Земле и условия их существования. Сущность жизни заключается в том,
Биология (от греч. bios – жизнь, logos – учение) – наука о жизни Биология изучает: Строение Проявление жизнедеятельности Среду обитания всех живых организмов:
Транксрипт:

Для специальностей: РВ, МО, ДУ, СУ, РА, ЮПКафедра электроники, доцент Родкина Л.Р. Концепции современного естествознания

«Иерархия уровней организации биологии и живой природы» Часть 3

Исторически биология развивалась как описательная (феноменологическая) наука о многообразных формах, видах и взаимосвязях растительного и животного мира. Это позволяет в начале ХХI века определить ее как совокупность наук о живой природе, многообразии существовавших и существующих живых организмов, их строении и функциях, происхождении,распространении и развитии, связанных друг с другом и с неживой природой.

В биологии, как ни в какой другой науке, важнейшее значение играли и играют методы анализа, систематизации и классификации эмпирического материала, заложенные еще Аристотелем, затем продолженные К. Браунингом ( ), Дж. Реем ( ), К. Линнеем ( ), Ж. Бюффоном ( ), Ж. Ламарком и великим Ч. Дарвином ( ). В биологии, как ни в какой другой науке, важнейшее значение играли и играют методы анализа, систематизации и классификации эмпирического материала, заложенные еще Аристотелем, затем продолженные К. Браунингом ( ), Дж. Реем ( ), К. Линнеем ( ), Ж. Бюффоном ( ), Ж. Ламарком и великим Ч. Дарвином ( ).

Структура биологии: Структуру биологии как науки сегодняшнего дня можно рассматривать с нескольких точек зрения: По объектам, По свойствам, По уровням организации живого.

По объектам исследования: Биологию подразделяют на: Вирусологию Бактериологию Ботанику Зоологию Антропологию.

По свойствам, проявлениям живого: Эмбриология – наука, изучающая зародышевое (эмбриональное) развитие организмов; Эмбриология – наука, изучающая зародышевое (эмбриональное) развитие организмов; Морфология – наука о строении живых организмов; Морфология – наука о строении живых организмов; Физиология - наука о функционировании организмов; Физиология - наука о функционировании организмов; Молекулярная биология – наука о микроструктуре живых тканей и клеток; Молекулярная биология – наука о микроструктуре живых тканей и клеток; Биоэкология – наука об образе жизни сообществ растительного и животного мира, их взаимосвязях с окружающей средой; Биоэкология – наука об образе жизни сообществ растительного и животного мира, их взаимосвязях с окружающей средой; Генетика – наука о наследственности и изменчивости. Генетика – наука о наследственности и изменчивости.

По уровню организации живых организмов выделяют: Анатомию – науку о макроскопическом строении животных и человека; Анатомию – науку о макроскопическом строении животных и человека; Гистологию – науку о строении тканей; Гистологию – науку о строении тканей; Цитологию – науку о строении живых клеток. Цитологию – науку о строении живых клеток.

Исторически в биологии свершились три этапа: 1. Систематика (К. Линней); 2. Эволюция (Ч. Дарвин); 3. Биология микромира (Г.Мендель) Каждый из этапов порождал соответствующую научно- исследовательскую парадигму.

Выявленные в ходе изучения живого масштабы позволяют дать следующую иерархию (структуру) уровней организации живых систем, в которой отражены их сложность и закономерности функционирования:

Уровни организации живых систем: 1. Биосферный – рассматривающий целостность всех живых организмов и окружающей среды, порождающий глобальную экологию планеты. 2. Уровень биогеоценозов – структурный уровень единства флоры и фауны (биоценоза) с населяемой географической областью планеты.

3. Популяционно-видовой уровень – образующийся свободно скрещивающимися между собой особями одного и того же вида. 4. Организменный или органо- тканевый уровень – все об отдельных особях: строение; физиология; поведение; функции органов и тканей.

5. Клеточный и субклеточный уровни – отражающий особенности функционирования и специализацию клеток, внутриклеточных особенностей. 6. Молекулярный уровень, на котором решаются проблемы генетики, генной инженерии и биотехнологии.

Жизнь как самоорганизующаяся и эволюционирующая система Часть 4

Типы систем. Характеристики. Система (греч. Systema – целое, составленное из частей) – множество элементов, находящихся в связях и отношениях друг с другом, образующих определённую целостность, единство.

1. Системы неживой природы 2. Системы живой природы 3. Общественные системы Многообразие материальных систем:

Также выделяют систему биокосную – это природная система, создаваемая динамическим взаимоотношением организмов и окружающей их среды (например, биогеоценоз, экосистема) и системы биологические. Биологические системы – это динамически саморегулирующиеся, и, как правило, саморазвивающиеся и самовоспроизводящиеся биологические образования различной сложности, обладающие, с одной стороны, свойством целостности, с другой – соподчинённостью в составе структурно- функциональных иерархических уровней организации.

Простые Сложные По объёму и числу составных частей системы делятся на:

Системы считаются простыми если в них входит число переменных, и поэтому взаимоотношение между элементами системы поддаётся математической обработке и выведению универсальных законов. Системы считаются простыми если в них входит число переменных, и поэтому взаимоотношение между элементами системы поддаётся математической обработке и выведению универсальных законов. Сложные системы состоят из большого числа переменных, а следовательно, и большого количества связей между ними. Чем оно больше, тем труднее описать закономерности функционирования данного объекта (системы).

Принципы самоорганизации систем: Закрытые Открытые

В открытых системах также производится энтропия, поскольку в них происходят необратимые процессы, но она в этих системах не накапливается, как в закрытых, а выводится в окружающую среду. Поскольку энтропия характеризует степень беспорядка в системе, постольку можно сказать, что открытые системы живут за счёт заимствования порядка из внешней среды.

Самоорганизация может происходить лишь в сильно неравновесных диссипативных системах результате случайных флуктуаций (лат. Fluctuatio – колебание, отклонение от некоторого среднего положения) или внешних воздействий. Наука, занимающаяся эволюцией и возникновением таких систем, называется синергетикой или термодинамикой открытых неравновесных систем.

Современная наука процесс самоорганизации систем определяет следующим образом: 1. Система должна быть открытой, потому что закрытая изолированная система в соответствии со вторым законом термодинамики в конечном итоге должна придти в состояние, характеризуемое максимальным беспорядком или дезорганизацией.

3. Если упорядочивающим принципом для изолированных систем является эволюция в сторону увеличения их энтропии или усиления их беспорядка (принцип Больцмана), то фундаментальным принципом самоорганизации служит, напротив, возникновение и усиление порядка через флуктуации. Такие флуктуации, или случайные отклонения системы от некоторого среднего положения, в самом начале подавляются и ликвидируются системой. 4. В отличие от принципа отрицательной обратной связи, на котором основывается управление и сохранение динамического равновесия систем, возникновение самоорганизации опирается на диаметрально противоположный принцип – положительную обратную связь, согласно которому изменения, появляющиеся в системе, не устраняются, а напротив накапливаются и усиливаются, что и приводит в конце концов к возникновению нового порядка и структуры.

5. Процессы самоорганизации, как и переходы от одних структур к другим, сопровождаются нарушением симметрии. Мы уже видели, что при описании необратимых процессов пришлось отказаться от симметрии времени, характерной для обратимых процессов в механике. Процессы самоорганизации, связанные с необратимыми изменениями, приводят к разрушению старых и возникновению новых структур 6. Самоорганизация может начаться лишь в системах обладающих достаточным количеством взаимодействующих между собой элементов и, следовательно, имеющих некоторые критические размеры. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления кооперативного (коллективного) поведения элементов системы и тем самым возникновения самоорганизации.

Перечисленные выше условия безусловно являются необходимыми для возникновения самоорганизации в различных природных системах. Но конечно же недостаточными. Так, в химических и биологических самоорганизующихся системах важная роль отводится факторам ускорения химических реакций (процессы катализа).

Главная идея синергетики (предметом коей являются самоорганизующиеся системы) – это идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации является образование петли положительной обратной связи системы и среды. При этом система начинает самоорганизовываться и противостоит тенденции её разрушения средой. Например, в химии такое явление называют автокатализом. В неорганической химии автокаталитические реакции довольно редки, но, как показали исследования последних десятилетий в области молекулярной биологии, петли положительной обратной связи (вместе с другими связями – взаимный катализ, отрицательная обратная связь и др.) составляют саму основу жизни. Порядок и беспорядок в природе. Хаос.

Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и её среды. Система само организуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты – точки бифуркации. Вблизи точек бифуркации в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает. Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и её среды. Система само организуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты – точки бифуркации. Вблизи точек бифуркации в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает. В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдёт на новый, более высокий уровень упорядоченности и организации (фазовые переходы и диссипативные структуры – лазерные пучки, неустойчивости плазмы, флаттер, химические волны, структуры в жидкостях и др.). В точке бифуркации система как бы «колеблется» перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация (момент случайности) может послужить началом эволюции (организации) системы в некотором определённом (и часто неожиданном или просто маловероятном) направлении, одновременно отсекая при этом возможности развития в других направлениях. В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдёт на новый, более высокий уровень упорядоченности и организации (фазовые переходы и диссипативные структуры – лазерные пучки, неустойчивости плазмы, флаттер, химические волны, структуры в жидкостях и др.). В точке бифуркации система как бы «колеблется» перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация (момент случайности) может послужить началом эволюции (организации) системы в некотором определённом (и часто неожиданном или просто маловероятном) направлении, одновременно отсекая при этом возможности развития в других направлениях.

Как выясняется, переход от Хаоса к Порядку вполне поддаётся математическому моделированию. И более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых различных сферах действительности ( в природе и обществе – его истории, экономике, демографических процессах, духовной культуре и др.) подчиняются подчас одному и тому же математическому сценарию. Как выясняется, переход от Хаоса к Порядку вполне поддаётся математическому моделированию. И более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых различных сферах действительности ( в природе и обществе – его истории, экономике, демографических процессах, духовной культуре и др.) подчиняются подчас одному и тому же математическому сценарию. Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы – это история образования всё более и сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях её организации – от низших и простейших к высшим и сложнейшим (человек, общество, культура). Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы – это история образования всё более и сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях её организации – от низших и простейших к высшим и сложнейшим (человек, общество, культура).