Скачать презентацию

Идет загрузка презентации. Пожалуйста, подождите

Презентация была опубликована 7 месяцев назад пользователемTolganay Anarbekova

1 Bubble Sort

2 Bubble Sort Example 9, 6, 2, 12, 11, 9, 3, 7 6, 9, 2, 12, 11, 9, 3, 7 6, 2, 9, 12, 11, 9, 3, 7 6, 2, 9, 11, 12, 9, 3, 7 6, 2, 9, 11, 9, 12, 3, 7 6, 2, 9, 11, 9, 3, 12, 7 6, 2, 9, 11, 9, 3, 7, 12 The 12 is greater than the 7 so they are exchanged. The 12 is greater than the 3 so they are exchanged. The twelve is greater than the 9 so they are exchanged The 12 is larger than the 11 so they are exchanged. In the third comparison, the 9 is not larger than the 12 so no exchange is made. We move on to compare the next pair without any change to the list. Now the next pair of numbers are compared. Again the 9 is the larger and so this pair is also exchanged. Bubblesort compares the numbers in pairs from left to right exchanging when necessary. Here the first number is compared to the second and as it is larger they are exchanged. The end of the list has been reached so this is the end of the first pass. The twelve at the end of the list must be largest number in the list and so is now in the correct position. We now start a new pass from left to right.

3 Bubble Sort Example 6, 2, 9, 11, 9, 3, 7, 122, 6, 9, 11, 9, 3, 7, 122, 6, 9, 9, 11, 3, 7, 122, 6, 9, 9, 3, 11, 7, 122, 6, 9, 9, 3, 7, 11, 12 6, 2, 9, 11, 9, 3, 7, 12 Notice that this time we do not have to compare the last two numbers as we know the 12 is in position. This pass therefore only requires 6 comparisons. First Pass Second Pass

4 Bubble Sort Example 2, 6, 9, 9, 3, 7, 11, 122, 6, 9, 3, 9, 7, 11, 122, 6, 9, 3, 7, 9, 11, 12 6, 2, 9, 11, 9, 3, 7, 12 2, 6, 9, 9, 3, 7, 11, 12 Second Pass First Pass Third Pass This time the 11 and 12 are in position. This pass therefore only requires 5 comparisons.

5 Bubble Sort Example 2, 6, 9, 3, 7, 9, 11, 122, 6, 3, 9, 7, 9, 11, 122, 6, 3, 7, 9, 9, 11, 12 6, 2, 9, 11, 9, 3, 7, 12 2, 6, 9, 9, 3, 7, 11, 12 Second Pass First Pass Third Pass Each pass requires fewer comparisons. This time only 4 are needed. 2, 6, 9, 3, 7, 9, 11, 12 Fourth Pass

6 Bubble Sort Example 2, 6, 3, 7, 9, 9, 11, 122, 3, 6, 7, 9, 9, 11, 12 6, 2, 9, 11, 9, 3, 7, 12 2, 6, 9, 9, 3, 7, 11, 12 Second Pass First Pass Third Pass The list is now sorted but the algorithm does not know this until it completes a pass with no exchanges. 2, 6, 9, 3, 7, 9, 11, 12 Fourth Pass 2, 6, 3, 7, 9, 9, 11, 12 Fifth Pass

7 Bubble Sort Example 2, 3, 6, 7, 9, 9, 11, 12 6, 2, 9, 11, 9, 3, 7, 12 2, 6, 9, 9, 3, 7, 11, 12 Second Pass First Pass Third Pass 2, 6, 9, 3, 7, 9, 11, 12 Fourth Pass 2, 6, 3, 7, 9, 9, 11, 12 Fifth Pass Sixth Pass 2, 3, 6, 7, 9, 9, 11, 12 This pass no exchanges are made so the algorithm knows the list is sorted. It can therefore save time by not doing the final pass. With other lists this check could save much more work.

8 Bubble Sort Example Questions 1.Which number is definitely in its correct position at the end of the first pass? 2.How does the number of comparisons required change as the pass number increases? 3.How does the algorithm know when the list is sorted? 4.What is the maximum number of comparisons required for a list of 10 numbers?

9 Answers 1.The last number must be the largest. 2.Each pass requires one fewer comparison than the last. 3.When a pass with no exchanges occurs. 4.9 comparisons, then 8, 7, 6, 5, 4, 3, 2, 1 so total 45

10
Pointer to Functions A simpler way: – You may define 6 comparison functions to do this: int bsort(int a[], int n, int (*pfun)(int a, int b) ) { int i, j, temp; for (i=n-1; i>=1; i--) for (j=0; j* 0 ) { temp = a[j]; a[j] = a[j+1]; a[j+1] = temp; } return 0; }
*

Еще похожие презентации в нашем архиве:

Готово:

How to crack technical interview ? Yogesh Mehla. Many of my friends who are technically good and even great, but they are unable to crack their first.

How to crack technical interview ? Yogesh Mehla. Many of my friends who are technically good and even great, but they are unable to crack their first.

© 2018 MyShared Inc.

All rights reserved.