1 ОНИ-ОИКС-ЛФК, Результаты 2010 Голосовский И. В. Научные исследования в 2010 году. Доклад на сессии Ученого совета ОНИ и Ученого совета ПИЯФ. Январь 2011.

Презентация:



Advertisements
Похожие презентации
Проект Мюоний тема: Исследование магнитной структуры твердых тел на μ-канале ПИЯФ. В.П.Коптев.
Advertisements

Научно-исследовательский институт физико-химических проблем БГУ Лаборатория нейтронной физики ОИЯИ Исследование структурного аспекта формирования оптических.
Тема дипломной работы: Диэлектрические свойства твердых растворов системы Руководитель: Иванов Олег Николаевич Выполнила: Юрченко Татьяна Игоревна.
Программа фундаментальных исследований Президиума РАН 27 «ОСНОВЫ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ НАНОТЕХНОЛОГИЙ И НАНОМАТЕРИАЛОВ» Проект: «Развитие методов.
Магнитные и диэлектрические материалы Некоторые основные понятия магнетизма магнитная индукция B в материале, помещенном в магнитное поле с напряженностью.
Разработка процессов получения и исследования физико-химических свойств наночастиц на основе оксидов железа и твёрдых растворов ферритов.
Кристаллизации металлов. Методы исследования металлов.
Типичные ошибки при выполнении заданий ЕГЭ по химии Учитель химии МБОУ «СОШ 59 с углубленным изучением отдельных предметов» г.Чебоксары Григорьева Л.М.
Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния.
МНОГОСЛОЙНЫЕ МАГНИТНЫЕ НАНОСТРУКТУРЫ Fe/Si ПОЛУЧЕННЫЕ ТЕРМИЧЕСКИМ ИСПАРЕНИЕМ В СВЕРХВЫСОКОМ ВАКУУМЕ. к.т.н. Варнаков С.Н. Работа проводилась при активном.
Новые композиционные наноматериалы с проводимостью по ионам лития и электронам на основе двойных фосфатов Институт общей и неорганической химии им. Н.С.Курнакова.
Тема 7. Магнитное поле в веществе. Основные вопросы темы 7.1. Намагничение магнетиков 7.2. Магнитные моменты атомов 7.2. Диа- и парамагнетики в магнитном.
Влияние высокого давления на кристаллическую и магнитную структуру манганита Pr 0.1 Sr 0.9 MnO 3 С. Е. Панков 1, С. Е. Кичанов 1, Д. П. Козленко 1, Е.
Доклад Изучение структурной стабильности и способов её повышения в 12% хромистых сталях с целью безопасности эксплуатации конструкционных элементов в атомной.
Физические и химические свойства железа Учитель химии МОУ СОШ 97 Новикова Ирина Владимировна Урок химии в 9 классе.
Особенности электронного строения. Эксперимент. Симметрия сверхпроводящей щели, s- и d-спаривание 2.8. Особенности электронного строения.
Магнитные свойства вещества Магнитное поле в веществе.
ХИМИЧЕСКИЕ МЕТОДЫ ФОРМИРОВАНИЯ НАНОЧАСТИЦ НАПРАВЛЕННЫЙ СИНТЕЗ Параметры синтеза: Температура (Т) Давление (Р) Состав питающей среды (х,у) Характеристика.
ЯМР с импульсным градиентом магнитного поля в приложении к исследованию диффузии в жидких кристаллах А.Б.Конов 1, К.М.Салихов 1, О.И.Гнездилов 1, Ю.Г.Галяметдинов.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Транксрипт:

1 ОНИ-ОИКС-ЛФК, Результаты 2010 Голосовский И. В. Научные исследования в 2010 году. Доклад на сессии Ученого совета ОНИ и Ученого совета ПИЯФ. Январь 2011.

2 ОНИ-ОИКС-ЛФК, Результаты 2010 Магнитные гетерогенные наноструктуры Система MnO/γ-Mn 2 O 3. Система FeO/Fe 3 O 4. Определена временная эволюция структуры и морфологии системы. Обнаружено, что вокруг наносистемы образуется еще одна оболочка со специфическими свойствами. Выполнены нейтрон-дифракционные (ILL- D1B) эксперименты с наночастицами CoO с кристаллической структурой "вюрцита" и "цинковой обманки", а также Ni со гексагональной структурой, которые в обычных условиях не существуют. Обнаружена несоразмерная магнитная структура в CoO. Начаты исследования наноструктур на основе магнетита, внедренного в анти- ферромагнитную (Co 3 O 4 ) реплику мезопористой матрицы KIT-6 с гироидальной морфологией. Начаты исследования магнитных пористых стекол с внедренными наночастицами магнетита и сегнетоэлектрика. Системы "ядро-оболочка" Наноструктурированные магнетики

3 ОНИ-ОИКС-ЛФК, Результаты 2010 Функциональные материалы Атомные колебания в наночастицах Продолжены дифракционные исследования атомного движения в наночастицах легкоплавких металлов Ga и Bi, наноструктурированных в пористом стекле. Показано, что кристаллическая структура наночастиц Ga зависит от скорости кристаллизации. Выяснена температурная эволюция структуры. Обнаружена сильная текстура, построена ее модель. Обнаружено сильное уменьшение температуры Дебая, обусловленное "смягчением" спектра колебаний. Завершены исследования магнитного поведения мультиферроика Tb 0.95 Bi 0.05 MnO 3. (BER-BESSY). Приготовлена публикация. Ю. А. Кибалин, И. В. Голосовский и др., "Применение метода дифракции нейтронов для изучения атомных колебаний в наноструктурированных объектах", Научно- технические ведомости СПбГПУ, 94, 59, Суперионники Bi 4 (V,Fe) 2 O 11 (фазы Ауривиллиуса) – новые материалы для мембран топливных элементов (LLB, 3T2). Показано, что магнетизм в системе обусловлен примесной оксидной фазой гематита. Обнаружен неизвестный ранее структурный переход в рамках моноклинной сингонии с потерей инверсии. Обнаружена структурная перестройка при постоянной температуре (300 0 С) с временем релаксации несколько суток. Выполнены нейтронографические (ILL-D20) и SQUID- эксперименты на новых мультиферроиках-релаксорах BiFeO 3 -PbTiO 3.

4 ОНИ-ОИКС-ЛФК, Результаты 2010 Разное Магнитные эпитаксиальные пленки MnF 2 и NiF 2. Эксперимент принят в LLB (6Т2). И. В. Голосовский и др., "Температурная эволюция структуры наночастиц оксида меди в пористых стеклах", Кристаллография, 56, 170, Принята к публикации глава в книге "Neutron scattering methods and studies", издательство Nova Science Publishers, Inc. NY: I. V. Golosovsky, "Neutron and x-ray diffraction studies of nanoparticles confined within porous media." Магнитные пленки MnGa с рекордной коэрцитивной силой. Определен фазовый состав и кристаллические структуры входящих фаз: Mn 3 Ga + β-Mn(Ga) + Ga.

5 ОНИ-ОИКС-ЛФК, Результаты система на основе реплики мезопористой матрицы с гироидальной морфологией Co 3 O 4 /Fe 3 O 4. Fe 3 O 4 ферромагнети к Co 3 O 4 антиферромагнетик Наноструктурированные гетерогенные системы – физические основы спинтроники , система MnO/γ-Mn 2 O I.V. Golosovsky et al., PRL 102, , A. López-Ortega, D. Tobia, E. Winkler, I. Golosovsky et al, JACS, 132, 9398, , система FeO/Fe 3 O 4. ядро-оболочка

6 ОНИ-ОИКС-ЛФК, Результаты 2010 Система "ядро-оболочка" FeO/Fe 3 O 4. В системах "ядро-оболочка" оболочка синтезируется в процессе окисления ядра на воздухе (пассивация). Поэтому исследование временной эволюции структуры и свойств – ключ к пониманию необычных свойств гетерогенных магнитных систем. Из профильного анализа следует: оболочка - стехиометрический магнетит Fe 3 O 4 ; ядро - оксид Fe x O + новая, неизвестная фаза со структурой шпинели Fe x O Fe 3 O 4 Профильный анализ двух типичных спектров – новый (свежий) образец и старый (выдержанный). Рентгеновский дифрактометр X-PERT PRO. Параметр x в взят из измерения спектров энергетических потерь электронов (Electron Energy Loss Spectroscopy).

7 ОНИ-ОИКС-ЛФК, Результаты 2010 Временная эволюция размеров системы, рассчитанная из дифракционных спектров. size of the nanoparticles within the shell

8 ОНИ-ОИКС-ЛФК, Результаты 2010 Площадь интерфейса. Намагниченность. Зависимости намагниченность насыщения, (из петли гистерезиса) и площадь интерфейса, (из дифракционных данных), похожи. Возможно, это отражает простой факт, что магнитный сигнал пропорционален площади интерфейса.

9 ОНИ-ОИКС-ЛФК, Результаты 2010 Размер оболочки, полученный из малоугловых спектров, хорошо согласуется с размерами оболочки, которая видна как прозрачное кольцо в электронной микроскопии. Микрофотография системы Fe x O/Fe 3 O 4 (TEM). Типичный профиль малоугловой рентгеновской дифракции (SAXS) на системе FeO/Fe 3 O 4 и его аппроксимация.

10 ОНИ-ОИКС-ЛФК, Результаты 2010 Показано, что система становится стабильной примерно после неделю, Определены ВСЕ структурные параметры и морфология. Обнаружено, что вокруг наносистемы образуется еще одна, дополнительная оболочка - "луковица"? Намагниченность системы пропорциональна площади интерфейса. Итак, результаты по системе FeO х /Fe 3 O 4

11 ОНИ-ОИКС-ЛФК, Результаты 2010 Необычные свойства гетерогенных магнитных наноструктур, обусловлены существованием интерфейса – нанометрового слоя, разделяющего компоненты с разными магнитными свойствами. Чем больше площадь интерфейса – тем больше эффект. Нужна как можно большая поверхность "ядра", на которой можно синтезировать (создать) другой магнитный материал. Никто не сказал, что "ядро" должно быть круглое!

12 ОНИ-ОИКС-ЛФК, Результаты nm Реплика мезопористой матрицы KIT-6 с гироидальной морфологией. Ia3d ¯ Model MCM-48 Channel diameter 33(3) Å, a 0 = Å. D = 310(5) Å. ( I. V. Golosovsky et al, PRB, 74, , 2006 ) Co 3 O 4 replica KIT-6 "Channel" diameter 91(2) Å, a 0 =228 Å. (From SANS) High Angle Anular Dark Field (HAADF) image of a mesoporous particle SANS

13 ОНИ-ОИКС-ЛФК, Результаты 2010 В мезопористой матрице можно синтезировать ферримагнетик! Hysteresis loop of Co 3 O 4 KIT-6 template. Hysteresis loop of Fe 3 O 4 embedded in a Co 3 O 4 KIT-6 template. Co 3 O 4 (антиферромагнетик) Fe 3 O 4 или нестехиометрический α- Fe 2 O 3 (ферримагнетик)

14 ОНИ-ОИКС-ЛФК, Результаты 2010 Твердотельная окисная топливная ячейка (SOFC). Высокая концентрация анионных вакансий для O 2 -прыжковой проводимости. Высокой симметрия для эквивалентности потенциалов между занятыми и вакантными местами. Много свободных вакансий для легкой диффузии ионов O 2. Поляризуемые катионы, которые могут деформироваться во время прыжка, что снижает энергию активации. Химическая стабильность, низкая рабочая температура. Что нужно, чтобы мембрана работала: Ba 2 In 2 O 5 Brownmillerite Твердотельные мембраны для топливных ячеек – водородная энергетика

15 ОНИ-ОИКС-ЛФК, Результаты 2010 Что происходит со структурой при замещении V на Fe ? Проводимость в Bi 4 V 2 O 11 при 600 ºC самая большая, известная для O 2 ионных проводников. Известно, что катионные замещения ведут к сильному, до 300 ºC, понижению рабочей температуры. Суперионники Bi4(V,Fe)2O11 (BIMEVOX) со структурой фаз Ауривиллиуса – новые материалы для мембран топливных элементов

16 ОНИ-ОИКС-ЛФК, Результаты 2010 Объект – Bi 4 (V 1-x Fe x ) 2 O 11, x = 0.25, Цель – выяснение природы магнитного сигнала, зарегистрированного в эффекте Мессбауэра. Эксперимент в LLB, Saclay. Результаты: Исследования показали присутствие двух рефлексов, интенсивность которых менялась с температурой, которые соответствуют магнитным рефлексам от гематита (α-Fe 2 O 3 ), который претерпевает спин-ориентационный переход. Магнитный сигнал в Мессбауэровских экспериментах обусловлен примесной оксидной фазой. Показано, что Fe входит в решетку не более 7 %. "Избыток" формирует примесную фазу. Результирующий состав – тетрагональная фаза (85 %)+ моноклинная (15 %, характерный размер 300 Å) + гематит (~ 1-2 %).

17 ОНИ-ОИКС-ЛФК, Результаты 2010 Структурный переход в Bi 4 (V 0.95 Fe 0.05 ) 2 O результаты: Обнаружен неизвестный фазовый переход при С в рамках моноклинной сингонии с появлением инверсии. Отмечено перераспределение кислородных ионов по позициям с температурой. Зарегистрирована аномальная амплитуда тепловых колебаний в определенных позициях кислорода, которые, по-видимому, отвечают за ионный транспорт.

18 ОНИ-ОИКС-ЛФК, Результаты 2010 Структурная перестройка при постоянной температуре со временем релаксации более суток. Изменение объема может быть связано как потерей кислорода, так и с структурной перестройкой – например – с поворотом октаэдров. Группа С2/m

19 ОНИ-ОИКС-ЛФК, Результаты 2010 Научные связи: 1.Физико-Технический Институт им. А.Ф. Иоффе, Санкт-Петербург. 2.Институт химии силикатов им. И.В. Гребенщикова РАН, Санкт- Петербург. 3.Научно-исследовательский физико-химический институт им. Л. Я. Карпова, Москва. 4.Институт общей физики им. А.М. Прохорова РАН, Москва. 5.Departament de Fìsica, Universitat Autònoma de Barcelona, Bellaterra, Spain 6.Institut Catalá de Nanotecnologia, Bellaterra, Spain. 7.Institut de Ciéncia De Materiales de Barcelona, Bellaterra, Spain. 8.Institut Laue Langevin, Grenoble, France. 9.Laboratoire Léon Brillouin, CE-Saclay, France. 10.ESRF, Grenoble, France.