Tema 10 INDUCCIÓN ELECTROMAGNÉTICA 10.1 Ley de Faraday-Henry 10.2 Ley de Lenz 10.3 Fuerza electromotriz de movimiento 10.4 Corrientes de Foucault 10.5.

Презентация:



Advertisements
Похожие презентации
1 Capítulo 9 Estimación e intervalos de confianza Objetivos: Al terminar este capítulo podrá: 1.Definir una estimación puntual. 2.Interpretar el nivel.
Advertisements

1 Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1.Explicar por qué una muestra es la única.
Introducción a las Finanzas AEA 504 Unidad 2 Clase 2.
Filtro Avanzado Un Filtro avanzado permite trabajar con filtros por medio de condiciones más complejas; no muestra listas desplegables para las columnas.
Conversión de Binario a Decimal. Cualquier número Binario puede ser convertido en su equivalente ENTERO Decimal. La forma de hacerlo es sumar en el número.
Referencias absolutas y relativas ¿Qué es una referencia? ¿Qué es una referencia? Cuando realizamos un cálculos como por ejemplo: =B1*B2 hacemos referencia.
Bases de Datos en Excel Microsoft Excel aporta al usuario la posibilidad de trabajar con tablas de información: nombres, direcciones, teléfonos, zonas,
IR MAS ALLA DE LA DEMANDA EXISTENTE Cap. 5. ¿Cómo maximizar el tamaño del océano azul que se está creando? Esto nos trae al tercer principio que es ir.
1 Capítulo 7 Distribución de probabilidad normal Objetivos: Al terminar este capítulo podrá: 1.Enlistar las características de la distribución de probabilidad.
Page 1 Page 2 Page 3 Page 4 El tanque de combustible generalmente se fabrica ya sea de metal o de plástico. El tanque de combustible generalmente contiene.
El universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las.
Introducción a las Finanzas AEA 504 Unidad 2 Clase 1.
FUNDAMENTOS DE INSTRUMENTACIÓN. LAZO DE CONTROL PROCESO: Lugar donde materiales y energía van juntos para producir un producto deseado. Un proceso es.
1 Capítulo 3 Descripción de datos, medidas de tendencia central Objetivos: Al terminar este capítulo podrá: 1.Calcular la media aritmética, la media ponderada,
Introducción a las Finanzas AEA 504 Unidad 4 Clase 3.
Introducción a las Finanzas AEA 504 Unidad 3 Clase 1.
1 Capítulo 2 Descripción de los datos, distribuciones de frecuencias y representaciones gráficas Objetivos: Al terminar este capítulo podrá: 1.Organizar.
Java CICLOSCICLOS. Haydeé MéndezProgramación 2 2 Recordatorio Habíamos hablado que dentro de un programa nos interesa poder controlar las acciones que.
1 Capítulo 4 Otras medidas descriptivas Objetivos: Al terminar este capítulo podrá: 1.Calcular e interpretar la amplitud, la desviación media, la varianza.
PERFILES BALANCEADOS Un perfil que no este balanceado jamás podrá representar la realidad. (Ramos, 1988) Un PERFIL BALANCEADO no representa necesariamente.
Транксрипт:

Tema 10 INDUCCIÓN ELECTROMAGNÉTICA 10.1 Ley de Faraday-Henry 10.2 Ley de Lenz 10.3 Fuerza electromotriz de movimiento 10.4 Corrientes de Foucault 10.5 Inducción mutua y autoinducción 10.6 Circuitos RL 10.7 Energía magnética 10.8 Introducción a las ecuaciones de Maxwell Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) BIBLIOGRAFÍA - Alonso; Finn. "Física ". Cap. 26 y 27. Addison-Wesley Iberoamericana. - Gettys; Keller; Skove. "Física clásica y moderna". Cap. 28 y 29. McGraw-Hill. - Halliday; Resnick. "Fundamentos de física". Cap. 35. CECSA. - Roller; Blum. "Física". Cap. 37 y 38. Reverté. - Serway. "Física". Cap. 31, 32 y 34. McGraw-Hill. - Tipler. "Física". Cap. 28. Reverté.

10.1 Ley de Faraday-Henry A principios de la década de 1830, Faraday en Inglaterra y J. Henry en U.S.A., descubrieron de forma independiente, que un campo magnético induce una corriente en un conductor, siempre que el campo magnético sea variable. Las fuerzas electromotrices y las corrientes causadas por los campos magnéticos, se llaman fem inducidas y corrientes inducidas. Al proceso se le denomina inducción magnética. Experimento 1 Variación de flujo magnético inducción Experimento 2 Variación de corriente inducción Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Enunciado de la ley de Faraday-Henry Un flujo variable produce una fem inducida en una espira. Como esta fem es el trabajo realizado por unidad de carga, esta fuerza por unidad de carga es el campo eléctrico inducido por el flujo variable. La integral de línea de este campo eléctrico alrededor de un circuito completo será el trabajo realizado por unidad de carga, que coincide con la fem del circuito. La fem inducida en un circuito es proporcional a la variación temporal del flujo magnético que lo atraviesa. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.2 Ley de Lenz La fem y la corriente inducida en un circuito poseen una dirección y sentido tal que tienden a oponerse a la variación que los produce. La corriente inducida se debe al movimiento relativo entre el imán y la espira. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.3 Fuerza electromotriz de movimiento Supongamos una varilla conductora que se desliza a lo largo de dos conductores que están unidos a una resistencia. El flujo magnético varía porque el área que encierra el circuito también lo hace. Como El módulo de la fem inducida será I Fem de movimiento es toda fem inducida por el movimiento relativo de un campo magnético y un segmento de corriente. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

¿Cuál es el efecto de la aparición de esta corriente inducida? El campo magnético ejerce una fuerza magnética sobre la varilla que se opone al movimiento I El resultado es que si impulsamos la varilla con una cierta velocidad hacia la derecha y luego se deja en libertad, la fuerza magnética que aparece sobre la varilla tiende a frenarla hasta detenerla. Para mantener la velocidad constante de la varilla, un agente externo debe ejercer una fuerza igual y opuesta a la fuerza magnética. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Fem de movimiento para un circuito abierto (Varilla aislada) La fem se induce en una barra o en un alambre conductor que se mueve en el seno de un campo magnético incluso cuando el circuito está abierto y no existe corriente. Equilibrio La diferencia de potencial a través de la barra será Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Diferencias entre el campo eléctrico electrostático y el campo eléctrico inducido Los inducidos no están asociados a cargas, sino a variaciones temporales del flujo magnético. Las líneas del inducido formas líneas cerradas, mientras que las líneas de campo que representan al electrostático nacen en las cargas positivas y mueren en las negativas. La diferencia de potencial entre dos puntos asociada a un electrostático es independiente del camino recorrido, de forma que se puede escribir Para los inducidos no se puede aplicar esta expresión, ya que la fem inducida es distinta de cero cuando varía el flujo magnético. Por lo tanto, el inducido no es un campo conservativo. Se puede hablar de fem inducida para una trayectoria determinada sin necesidad de que ésta coincida con un circuito físico. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.4 Corrientes de Foucault En el núcleo de un transformador, los flujos variables producen corrientes en el metal. El calor producido por estas corrientes da lugar a pérdidas de potencia en el transformador. La pérdida de potencia se puede reducir aumentando la resistencia de los posibles caminos que siguen las corrientes de Foucault (por ejemplo, laminando el conductor o recortando el metal). Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.5 Inducción mutua y autoinducción Autoinducción Existe una relación ente el flujo que atraviesa un circuito y la corriente que recorre el mismo. L: Autoinducción de la espira, que depende de sus propiedades geométricas. Unidad en S.I.: Henrio (H) Si la corriente varía, también lo hace el flujo magnético y podemos escribir Por la Ley de Faraday-Henry Un solenoide con muchas vueltas posee una gran autoinducción, y en los circuitos se representa como Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Inducción Mutua Cuando dos o más circuitos están próximos, el flujo magnético que atraviesa uno de ellos depende de la corriente que circula por él y de las que circulan por los circuitos próximos. P1P1 2 El campo magnético en P 1 tiene una componente debida a I 1 y otra debida a I 2. Análogamente para el punto P 2. Circuito 1 Circuito 2 M 12 y M 21 es la inducción mutua, que depende de la posición relativa entre ambos conductores. Por la Ley de Faraday Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Ejemplo: Ejemplo: Un solenoide largo y estrecho, de espiras apretadas, está dentro de otro solenoide de igual longitud y espiras apretadas, pero de mayor radio. Calcula la inducción mutua de los dos solenoides. Para calcular la inducción mutua entre dos conductores, basta con suponer que por uno de ellos circula una corriente I y calcular el flujo de campo magnético a través del otro conductor. El cociente entre el flujo y la corriente es la inducción mutua. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.6 Circuitos RL Un circuito RL está formado por una resistencia y un solenoide o bobina. Cuando se cierra el interruptor, la fem inducida en la bobina impide la que corriente en el circuito aumente de forma brusca, de forma que sigue la ley : Constante de tiempo inductiva Caso I Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Una vez alcanzada la corriente estacionaria con S 1 cerrado, cerramos S 2 y abrimos S 1, para eliminar los efectos de la batería. En este caso, el circuito está formado por una resistencia y una bobina por las que, en t = 0, circula una corriente I o Caso II Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.7 Energía magnética Una bobina o un solenoide almacena energía magnética de la misma forma que un condensador almacena energía eléctrica. Ecuación de un circuito RL Multiplicando por I en ambos miembros, obtenemos una ecuación en términos de potencia Potencia suministrada por la batería Potencia disipada en R por efecto Joule Potencia almacenada en la bobina Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

Energía almacenada en la bobina : U m La energía total almacenada se obtiene integrando Densidad de energía : Energía magnética por unidad de volumen Caso de un solenoide Resultado general Densidad de energía electromagnética Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM)

10.8Introducción a las ecuaciones de Maxwell Hacia 1860, James Clerk Maxwell dedujo que las leyes fundamentales de la electricidad y el magnetismo podían resumirse de forma matemática en lo que se conoce como las Leyes de Maxwell. Estas ecuaciones relacionan los vectores y con sus fuentes, que son las cargas en reposo, las corrientes y los campos variables. Las Leyes de Maxwell juegan en el Electromagnetismo el mismo papel que las Leyes de Newton en la Mecánica Clásica. Maxwell demostró que estas ecuaciones podían combinarse para dar lugar a una ecuación de ondas que debían satisfacer los vectores y cuya velocidad en el vacío debía ser Dicha velocidad coincide con la velocidad de la luz en el vacío. Luego la luz también es una onda electromagnética.

ECUACIONES DE MAXWELL En su forma integral La primera es la ley de Gauss y nos dice que el flujo a través de una superficie cerrada es proporcional a la carga encerrada. La segunda, es la ley de Gauss para el magnetismo, implica la no existencia de monopolos magnéticos, ya que en una superficie cerrada el número de líneas de campo que entran equivale al número de líneas que salen. La tercera, es la ley de Faraday. En este caso, en el segundo término tenemos el flujo magnético a través de una superficie no cerrada. Esta ley relaciona el flujo del campo magnético con el campo eléctrico. La integral de circulación del campo eléctrico es la variación del flujo magnético. La cuarta, es la ley de Ampère, generalizada por Maxwell y expresa cómo las líneas de campo magnético rodean una superficie por la que circula una corriente o hay una variación del flujo eléctrico. La integral de circulación del campo eléctrico es proporcional a la corriente y a la variación del flujo eléctrico. (1) (2) (3) (4) Corriente de desplazamiento

Para deducir la ecuación de las ondas electromagnéticas vamos a escribir las ecuaciones de Maxwell en su forma diferencial El término de la corriente de desplazamiento permite la solución de ondas electromagnéticas. El segundo par de las ecuaciones de Maxwell conecta las derivadas espaciales de cada campo con el ritmo de variación de cada uno de ellos. Es este acoplamiento de los campos eléctricos y magnéticos lo que origina la propagación de las ondas. Cualitativamente un campo magnético variable con el tiempo en la ecuación (7), conduce a un campo eléctrico variable con el tiempo,, el cual conduce a su vez a un campo magnético, dependiente del tiempo, en la ecuación (8). (5)(5) (6)(6) (7)(7) (8)(8)

La forma estándar de proceder con tales ecuaciones diferenciales acopladas es tomar la derivada de una de ellas y usar la otra para eliminar una u otra de las variables independientes. En este caso tomaremos el rotacional de la ley de Faraday, puesto que esto conecta con el rotacional del campo eléctrico lo que nos permite eliminarlo usando la ley de Ampère generalizada. (9)(9)(10) (11) (12) Para simplificar, vamos a tratar ondas electromagnéticas en el vacío, considerando el caso en el que no hay corrientes ( =0) ni cargas ( =0). Con estas hipótesis las ecuaciones de Maxwell quedan como:

El término izquierdo de la ecuación (13), puede ser reordenado usando la siguiente identidad vectorial Calculando el rotacional de la ley de Faraday (13) Y usando la propiedad conmutativa en el término de la derecha, podemos escribir finalmente (14) Sustituyendo las ecuaciones (9) y (12) en la (14), obtenemos (15) Operando de forma análoga para el campo magnético (16)

Puesto que Obtenemos para la velocidad de fase un valor de c = 2.99·10 8 m/s el cual coincide con la velocidad de la luz, c. La conclusión es clara, la luz misma es una onda electromagnética. Este es un ejemplo de una de las primeras unificaciones en física de dos ramas de la misma que, en principio, parecían separadas como son el electromagnetismo y la óptica y por lo tanto, uno de los mayores triunfos de la física del siglo XIX. Estas ecuaciones obedecen a una ecuación de ondas tridimensional para los campos y con velocidad de fase

Relación entre la propagación de los campos eléctrico y magnético Vamos a introducir la expresión de los campos en forma de ondas armónicas planas Donde es el número de ondas, que es un vector que apunta en la dirección de la onda. Así, podemos reescribir las ecuaciones de Maxwell, en forma de ecuaciones vectoriales

Las primeras dos ecuaciones demuestran que los dos campos y son perpendiculares al vector de onda, puesto que apunta en la dirección de la onda, esto significa que las ondas electromagnéticas son ondas transversales. Como, en general un vector en 3D tiene tres grados de libertad, la condición de que el campo eléctrico debe ser perpendicular a reduce entonces los grados de libertad a dos. Físicamente esto corresponde a los dos estados de polarización en los que la luz puede dividirse. Las otras dos ecuaciones relacionan los campos eléctrico y magnético. Es normal visualizar el campo eléctrico como el que define la onda, y por ejemplo, la dirección en la que apunta define la polarización de la onda. Es conveniente usar para obtener la intensidad de campo magnético. Esta ecuación demuestra que es perpendicular a, y por lo tanto hemos encontrado la propiedad fundamental de las ondas electromagnéticas, esto es que, y son mutuamente perpendiculares. Puesto que y son perpendiculares, en términos de sus módulos, tenemos. Para ondas en vacío, la velocidad de fase es c y por lo tanto. La última ecuación no nos da información nueva puesto que con se reduce a la expresión anterior.

Propagación de las ondas electromagnéticas Los campos Eléctrico y Magnético oscilan localmente Las direcciones locales del Campo Eléctrico y Magnético son mutuamente perpendiculares La generación de OEM requiere que las dimensiones del medio emisor sean del orden de la longitud de onda generada. antenas de radio que emiten en AM (amplitud modulada), en onda larga o corta, tienen dimensiones de decenas a centenares de metros microondas, con longitudes de onda típicas en el rango de los micrones se generan en cavidades resonantes de algunos centímetros de tamaño rango del infrarrojo a los rayos X está asociado a emisión de ondas electromagnéticas por átomos o moléculas rayos están asociados a procesos nucleares.

El espectro electromagnético (nm) espectro visible Longitud de onda (m) Frecuencia (Hz) ultravioleta Rayos XRayos gama infrarojoOndas de radio Onda larga = 3·10 8 m/s Radio AM Canales TV Radio FM Horno microondas banda ciudadana telefonía móvil Frecuencia (Hz)

ondas de radio y TV microondas radiación térmicaluz radiación láser rayos X rayos gama ¿Dónde se encuentran las o.e.m?

Ondas de radiofrecuencia Las generadas por Hertz con 1 m. [1 km, 0.3 m] f [1 Hz,10 9 Hz] Ondas emitidas por los circuitos eléctricos (50 Hz). No existe límite teórico a estas ondas. Microondas Intervalo de variación [30 cm, 1 mm] f [10 9 Hz, Hz] Utilidad en radioastronomía y en la comunicación de vehículos espaciales. Las frecuencias de los microondas coinciden con la frecuencia natural de las moléculas de agua. Esta es la base de los hornos microondas. Una breve descripción del espectro electromagnético

Infrarrojo f [ Hz, Hz] Detectadas por Sir William Herschel en 1800 Subintervalos IR cercano: 780 nm-3000 nm IR intermedio: 3000 nm-6000 nm IR lejano: 6000 nm nm IR extremo: nm-1 mm Cualquier molécula por encima de cero absoluto radiará en el IR (por agitación térmica). Los cuerpos calientes radían IR en un espectro continuo (por ejemplo un radiador). Aproximadamente la mitad de la energía electromagnética del Sol es IR. El cuerpo humano también radía IR (esta emisión se utiliza para visión nocturna). Existen misiles que siguen el calor y que son guiados por IR.

La luz Sensibilidad del ojo humano: 400 nm-700 nm. Newton fue el primero en reconocer que la luz blanca es mezcla de todos los colores del espectro visible. El color no es una propiedad de la luz en sí misma, sino una manifestación de nuestro sistema de percepción (La luz no es amarilla, la vemos amarilla, ya que con distintas mezclas de distintas longitudes de onda podemos obtener la misma respuesta a nuestro ojo). Ultravioleta Descubiertos por Ritter sobre 1800: f [10 9 Hz, Hz] Los rayos UV del Sol ionizan los átomos de la atmófera superior y así se crea la ionosfera. El ozono absorbe estos rayos en la atmósfera. Para < 290 nm los UV son germicidas. Los seres humanos no ven muy bien los UV porque los absorbe la córnea y el cristalino.

Rayos X Descubiertos por Röetgen ( ): f [ Hz, Hz] Se utilizan en medicina para radiodiagnóstico. Existen microscopios de RX. Rayos Radiaciones electromagnéticas con la longitud de onda más corta. Son emitidas por partículas que están sujetas a transiciones dentro del núcleo atómico. Es muy difícil observar fenómenos ondulatorios en esta parte del espectro electromagnético.