Кафедра медичної біології, мікробіології, вірусології та імунології ФІЗІОЛОГІЯ МІКРООРГАНІЗМІВ. РІСТ І РОЗМНОЖЕННЯ БАКТЕРІЙ Лектор проф. С.І. Климнюк.

Презентация:



Advertisements
Похожие презентации
Кафедра мікробіології, вірусології та імунології Фізіологія мікроорганізмів. Живлення, ріст, розмноження, дихання, метаболізм. Вплив факторів зовнішнього.
Advertisements

основа всіх клітин, вони є будівельним матеріалом тваринних організмів та організму людини, беруть участь в обміні речовин, у формуванні імунітету, в.
Всі молекули, що входять до живої речовини, є сполуками – складними речовинами. Прикладом є д езоксирибонуклеїнова кислота (ДНК) один із двох типів природних.
Медичне училище Ім.В.О.Жуковского Презентація З БІОЛОГІЇ ТА ЕКОЛОГІЇ НА ТЕМУ: ФЕРМЕНТИ Виконала : Студентка групи 1 Л Піонтковска Надія.
Внутрішнє середовище організму. Внутрішнє середовище організму - це сукупність рідин, які беруть участь в процесах обміну речовин і підтримки гомеостазу.
Макаренко Ірина 2 (6) - А клас. *. * До найпростіше побудованих організмів, які можна бачити лише за великого збільшення під мікроскопом, належать бактерії.
Плазматична мембрана, або плазмалема, - найбільш постійна, основна, універсальна для усіх клітин мембрана. Вона є найтоншою (близько 10 нм) плівкою, що.
Розробила учитель біології та хімії Ліцею Пресиж м. Києва Жабіна Л. А.
Дослідження хімічного складу їжі ПІДГОТУВАЛИ УЧЕНИЦІ 9 Б КЛАСУ ПЕТРОВСЬКА МАРІЯ ДЕРКАЧ АНАСТАСІЯ.
Фотосинтез Повільне окиснення Обмін речовин Фотосинтез як природний хімічний процес: суть та значення. Фотосинтез як природний хімічний процес: суть.
Харчування одна із основних життєво необхідних умов існування людини. Харчування впливає на стан здоров`я, працездатність, настрій та тривалість життя.
Усі неорганічні сполуки за подібністю їхнього складу та хімічних властивостей об'єднують в окремі групи, або класи. Проте жоден з використовуваних принципів.
Кругообіг Нітрогену. . Азо́тний цикл (колообіг азоту) геобіохімічний цикл, що описує процес замкнутих взаємопов'язаних шляхів, якими азот циркулює через.
«Розчини» Рóзчини (рос. раствор, англ. solution, нім. Lösung f) цілком однорідні суміші з двох (або кількох) речовин, в яких молекули (або іони) одної.
Транспорт речовинию.Біологія 8 клас
Харчування підлітків Залежно від статі,віку, ваги, зросту та роду занять змінюється потреба організму в харчових речовинах.Підлітки, які їдять багато фруктів.
Підготувала: Учениця 6-В класу Бунь Вікторія 1. Що таке бактерія? 2. Який вигляд мають бактерії? 3. Які їхні особливості? 4. Які їхні розміри? 5.Як вони.
Систематизувати та поглибити знання про елементи неметали та їхні сполуки. Пояснити шляхи колообігу Оксигену, Карбону, Нітрогену, біологічне значення.
Бактерії - це примітивні одноклітинні живі організми. Вони поширені повсюдно : на поверхні або усередині інших організмів ( тварин, рослин, людини ), у.
Глюкоза
Транксрипт:

Кафедра медичної біології, мікробіології, вірусології та імунології ФІЗІОЛОГІЯ МІКРООРГАНІЗМІВ. РІСТ І РОЗМНОЖЕННЯ БАКТЕРІЙ Лектор проф. С.І. Климнюк

План лекції Хімічний склад бактерій Клітинний метаболізм Конструктивний метаболізм Типи живлення бактерій Mеханізми проникнення речовин Ферменти мікроорганізмів Типи дихання бактерій Ріст і розмноження бактерій Живильні середовища

Фізіологія мікроорганізмів вивчає біохімічні й енергетичні процеси, що відбува- ються в бактеріальній клітині й забезпечують відтворення її струк- турного матеріалу та енергетичні потреби.

Хімічний склад бактерій. Бактерійна клітина складається з чотирьох основних елементів: азот, 8-15 % вуглець, % водень, 6-8 % кисень, %

Залежно від виду бактерії містять від 70 до 90 % води. Вона може знаходитись у вільному (в цитоплазмі) або звязаному стані.

Сухий залишок становить %. Він формується з білків, нуклеїнових кислот, ліпідів, вуглеводів, полісахаридів, низькомолекулярних органічних речовин і солей.

Білок складає до 55 % сухого залишку клітини. Його представлено простими (протеїнами) та складними білками. Основна їх маса міститься в цитоплазмі клітини, цитоплазматичній мембрані, клітинній стінці грамнегативних мікробів, нуклеоїді. Токсини збудників газової анаеробної інфекції, правця, ботулізму, фермент гіалуронідаза є простими білками.

Складні білки – протеїди: нуклеопротеїди, глікопротеїди, ліпопротеїди, хромопротеїди.

У клітині нараховується понад 25 млн різноманітних молекул Білок55 %2,4 млн. мол РНК20,5%250 тис. мол. ДНК3,1 %2 молекули Ліпіди9,1 %22 млн. молекул Ліпополісахариди3,4 %1,5 млн. молекул Пептидоглікан2,5 %1 молекула

Важливою складовою частиною будь-якої мікробної клітини є мінеральні елементи. Вони входять до складу вітамінів, ферментів, білків і можуть знаходитись у вільному стані в цитоплазмі. Загальна їх кількість % сухого залишку. Сірка і фосфор, їх похідні постачають клітину енергією. Калій і натрій необхідні для нормальної життєдіяльності бактерій, забезпечують функціонування натріє-калієвого насосу. Магній й кальцій здатні активувати багато ферментів; залізо – невідємний складник цитохромів.

Клітинний метаболізм - це сукупність усіх біохімічних перетворень у клітині. Він відбувається за двома основними напрямками: Біосинтез (конструктивний метаболізм або анаболізм) забезпечує синтез складних клітинних сполук із більш простих. Тому він одержав назву. Енергетичний метаболізм (катаболізм) представляє собою потік реакцій, які супроводжуються накопиченням електрохімічної енергії, що потім викорстовується клітиною.

Конструктивний та енергетичний метаболізм - тісно повязаний між собою комплекс перетворень, часто їх шляхи співпадають, і одні й ті ж речовини використовуються для різних потреб. Такі субстрати називаються амфіболітами, а шляхи - амфіболічними.

Конструктивний метаболіз прокаріотів Залежно від того, який вуглець засвоюють бактерії, вони поділяються на дві групи: автотрофи; гетеротрофи.

Ступінь вираження гетеротрофії у бактерій може бути найрізноманітніша. Найвищу гетеротрофність мають прокаріотичні організми, які здатні жити тільки всередині живих клітин (рикетсії, хламідії). Їх метаболічні шляхи повністю залежать від організму хазяїна. Такі мікрорганізми називають облігатними (суворими) паразитами.

Багато мікробів можна вирощувати на штучних живильних середовищах, до складу яких входять білки, пептиди, вітаміни, фрaгменти нуклеїнових кислот. Форми бактерій, здатних рости поза клітинами людини або тварин при створенні необхідних умов, називають факультативними паразитами.

Більшість бактерій, що населяють земну кулю (понад 99 %), належать до сапрофітів. Вони безпосередньо від живих організмів не залежать і живляться за рахунок мертвих органічних залишків.

Дикі штами бактерій здатні синтезувати всі необхідні їм речовини з обмеженого числа органічних сполук, наприклад, глюкози та солей амонію, називаються прототрофами. Окремі мікроорганізми (варіанти прототрофів) втратили здатність до синтезу деяких необхідних їм ростових факторів, отже не можуть рости на мінімальних живильних середовищах, називаються ауксотрофними організмами.

Джерела енергії та донори електронів Залежно від джерела енергії, що засвоюють мікробні клітини, їх поділяють на фототрофи і хемотрофи. Залежно від донора елетронів: літотрофи (неорганічні субстрати) та органотрофи (органічні)

Тип живлення Джерела енергії, H/e-, вуглецю Приклади мікроорганізмів Фотоліто- трофи автотрофи Енергія світла Неорганічні донори H/e- CO 2 джерело вуглецю Водорослі сульфобактерії ціанобактерії Фотооргано- трофи гетеротрофи Енергія світла, Органічні донори H/e- Органічні джерела вуглецю Пурпурні і зелені бактерії Хемоліто- трофи автотрофи Хімічні джерела енергії (неорганічні) Неорганічні донори H/e- CO 2 джерело вуглецю Нітрифікуючі бактерії, залізобактерії Хемооргано- трофи гетеротрофи Хімічні джерела енергії (органічні) Органічні донори H/e- Органічні джерела вуглецю Найпростіші Гриби Більшість бактерій Основні типи живлення мікроорганізмів

Мікроорганізми, які здатні викликати у людини захворювання, належать до хемоорганогетеротрофів

Бактерії, яким притаманний один із спосібів живлення, позначають як облігатні, а ті, які використовують два джерела енергії, - міксотрофи.

Надходження речовин у клітину. Встановлено, що мікробам притаманний голофітний тип живлення, тобто вони здатні поглинати живильні речовини тільки в розчиненому вигляді.

Пасивна дифузія - градієнт концентрації речовини всередині бактеріальної клітини та зовні. Вона відбувається пасивно, тому що не вимагає затрат енергії. Полегшена дифузія здійснюється за рахунок особливих білків - пермеаз, які містяться в цитоплазматичній мембрані. Цей процес також не вимагає енергетичного забезпечення. Mеханізми проникнення речовин

Механізм живлення бактерій

Більшість поживних речовин, метаболітів, іонів проникають у клітину за допомогою активного транспорту. Його забезпечують білки- пермеази, Цей процес відбувається за рахунок енергії, яку генерує клітина, тому можливий перенос і проти градієнта концентрації речовини.

Якщо цьому процесу передує певна хімічна модифікація молекули, його називають транслокацією хімічних груп. Виділяють також механізм іонного транспорту, при якому відбувається перенос у клітину окремих неорганічних іонів.

Ферменти мікроорганізмів належать до 6 класів: гідролази (забезпечують реакції розщеплення за участю води), оксидоредуктази (каталізують окисно-відновні реакції, беруть участь у процесах дихання), ізомерази (здійснюють перенос фосфатних груп у молекулах, спонукаючи процеси ізомеризації), трансферази (переносять аміногрупи, аденілові групи з одних субстратів на інші), ліази (каталізують реакції відщеплення хімічних груп негідролітичним шляхом), лігази (відповідають за синтез нових речовин, який відбувається за рахуноко енергії АТФ).

ГІДРОЛАЗИ АДАПТИВНІ ОКСИДОРЕДУКТАЗИ КОНСТИТУТИВНІ ІЗОМЕРАЗИ ТРАНСФЕРАЗИ ЛІАЗИ ЛІГАЗИ ЕНДОФЕРМЕНТИ ЕКЗОФЕРМЕНТИ ФЕРМЕНТИ МІКРООРГАНІЗМІВ

Ферменти бактерій

Значення ферментів Загальнобіологічне значення. Участь бактерій у кругообізі речовин у природі, формуванні родовищ корисних копалин (нафта, вугілля, поклади сірки). Мікроорганізми - прекрасні санітари довкілля. Вони здатні біодеградувати будь-які речовини, що забруднюють навколишнє середовище. Їх широко використовують у різних галузях хімічної, харчової, фармацевтичної, парфумерної промисловостей, сільському господарстві, медицині.

Протеазами видаляють волосяний покрив зі шкір тварин, знімають желатиновий шар з кіноплівки. Ферменти, що забезпечують бродіння, використовуються для одержання бутанолу, ацетону, необхідних для проведення хроматографічних досліджень, етилового спирту, масляної кислоти. Кисломолочні продукти - кефір, йогурт, кисляк, кумис - також продукти діяльності бактерій бродіння.

Мікроорганізми використовуються у виноробстві, виробництві пива, при виготовленні вершкового масла, силосуванні кормів, квашенні овочів. Із дріжджів одержують білково-кормові добавки для вигодовування худоби. Як живильне середовище використовують парафіни - відходи нафти. За допомогою мікроорганізмів та їх ферментних систем в медичній промисловості одержують гормони гідрокортизон, преднізолон, різноманітні алкалоїди.

Пропіонібактерії, актиноміцети синтезують вітаміни (В12­). Із стрептококів одержано фібринолізин, стрептодорназу і стрептокіназу, які руйнують тромби в кровоносних судинах. Оскільки здатність утворювати ферменти певної специфічності притаманна всім мікроорганізмам, це широко використову- ється в лабораторній практиці для ідентифікації бактерій. Її проводять за комплексом цукролітичних, протеолітич- них, пептолітичних, ліполітичних та інших ферментів.

Енергетичний метаболізм прокаріотів - реакції, що забезпечують клітину внутрішньою енергією, значно перевищують біосинтетичні процеси. Мікроорганізми можуть використовувати не всі форми енергії, що існують у природі. Вони здатні користуватись тільки енергією сонячного світла (фотосинтезуючі бактерії) та хімічною (хемотрофні мікроби). Недоступні для них ядерна, механічна та теплова енергії.

Протягом своєї еволюції бактерії виробили три способи одержання енергії: бродіння, дихання і фотосинтез.

Енергія, яку генерує клітина, запасається у формі електрохімічного трансмембранного градієнта іонів водню - н+ або в молекулах АТФ. Протонний АТФ-синтетазний комплекс

На прикладі E. coli визначено, скільки необхідно енергії, щоб синтезувався 1 г клітинної речовини - 37 ммоль АТФ: 20 ммоль - синтез білка, 7 ммоль - синтез ДНК і РНК, 2 ммоль - полімеризація цукрів, решта - підтримання життєдіяльності (осмос, рух клітини тощо)

Іншою універсальною клітинною енергією є енергія трансмембранного потенціалу Н+.

Дихання бактерій. Це один із шляхів біологічного окислення, який відбувається з утворенням молекул АТФ, тобто супроводжується нагромадженням енергії.

Облігатні аероби (збудники туберкульозу, чуми, холери) Облігатні анаероби (збудники правця, ботулізму, газової анаеробної інфекції, бактероїди, фузобактерії) Факультативні анаероби (стафілококи, ешеріхії, сальмонели, шигели та інші) Мікроаерофіли (молочнокислі, азотфіксуючі бактерії) Капнеїчні (збудник бруцельозу бичачого типу) Аеротолерантні бактерії (Streptococcus pyogenes) Поділ бактерій за типами дихання

Ріст бактерій O блігатні аероби Факультативні анаероби O блігатні анаероби

Під ростом розуміють координоване відтворення бактеріальних структур і відповідно збільшення маси мікробної клітини. Розмноження - це здатність мікробів до самовідтворення, при цьому збільшується кількість особин у популяції на одиницю обєму середовища Ріст і розмноження

Бактерії розмножуються у геометричній прогресії. Якщо вважати, що за оптимальних умов бактерія подвоюється кожні 30 хвилин, то за годину їх буде 4, через дві години - 16, через , через 15 - мільйони. Через 35 год їх обєм становитиме до 1000 м 3, а маса - понад 400 т.

Крива, яка описує залежність логарифму числа живих клітин від часу культивування, називається кривою росту Розрізняють чотири основні фази росту періодичної культури: початкову (або лаг-) фазу, експоненціальну (або логарифмічну) фазу, стаціонарну та фазу відмирання

Ріст мікробної популяції Виділяють чотири основні фази росту 1) Lag фаза 2) Log або логарифмічна фаза 3) Стаціонарна фаза 4) Фаза відмирання

Крива бактеріального росту

LAG-ФАЗА Мікроб призвичаюється до середовища –Поділу практично немає Синтез ДНК, рибосом. ензимів –Засвоєння живильних речовин, які використовуються для росту Mouse click for lag phase adjustment

Логарифмічна фаза (Log фаза) Поділ відбувається на постійному рівні (час генерації) Клітини найчутливіші до інгібіторів

СТАЦІОНАРНА ФАЗА Відмирання та поділ клітин на постійному рівні (рівновага) Смерть повязана із зменшенням кількості живильних речовин, змінами рН, токсичною дією речовин, зменшенням кисню Клітини менші і мають небагато рибосом Деколи клітини не гинуть, але не розмножуються

СТАЦІОНАРНА ФАЗА

ФАЗА ВІДМИРАННЯ Популяція відмирає у геометричні прогресії, більше відмирає клітин, ніж утворюється нових Загибель відбувається внаслідок: –1) факторів, які діють в стаціонарній фазі –2) дії літичних ферментів, які утворюються при руйнуванні клітин

ФАЗА ВІДМИРАННЯ

in 37 o C, pH 5.1 ; in 45 o C, pH 6.2 Біореактор BC Yang For lecture only

Визначення кількості бактерій 1) Підрахунок числа колоній на чашках 2) Прямий підрахунок бактерій Клінічно значуща концентрація

Підрахунок колоній на чашках –Серійне розведення матеріалу, мірний посів його на чашки, інкубація та підрахунок числа колоній після

Підрахунок колоній на чашках Число колоній на чашці повинно бути в межах від 30 до 300

Підрахунок колоній на чашках 42 колонії Розведення 1: (10 -4 ) Підрахувати кількість бактерій в 1 мл Інкубація

–Перемножити число колоній, які виросли на чашках на розведення і знайти кількість бактерій у досліджуваному матеріалі –Приклад Число колоній = 42 Розведення = 1: мл ПідрахунокПідрахунок 42 X = бактерій в 1 мл Підрахунок колоній на чашках

Мікроорга- нізми Т е м п е р а т у р н и й оптимуммаксимуммінімум Термофіли С75 С45 С Мезофіли С43-45 С15-20 С Психрофіли С25-30 С0-5 С Класифікація мікроорганізмів за температурним оптимумом

Оптимальна температура росту Варіює C % Ma кс. росту 37 0 C90 0 C Психрофіли Me зофіли T ермофіли

Вплив температури на ріст

Вимоги до живильних середовищ 1. Забезпечення потреб в азоті, вуглеці та водні для побудови власних білків. Водень і кисень для клітин постачає вода. Джерелом азоту виступають численні речовини, в основному, тваринного походження (мясо яловиче, риба, мясо- кісткова мука, казеїн), а також білкові гідролізати, пептиди, пептони. 2. Ростові фактори (вітаміни, ферменти). Універсальним джерелом їх служать екстракти з білків тваринного й рослинного походження, білкові гідролізати. Для мікробів з більш складними харчовими потребами до складу середовищ включають нативні субстрати - кров, сироватку, асцитичну рідину, яєчний жовток, кусочки печінки, нирок, мозкової тканини та ін.

3. Середовища повинні бути збалансованими за мікроелементним складом і містити іони заліза, міді, марганцю, цинку, кальцію, натрію, калію, мати у своєму складі неорганічні фосфати. 4. Допустимим є вживання речовин, які усувають дію інгібіторів росту і токсиноутворення мікробів (окремі амінокислоти, твіни, активоване вугілля тощо). 5. Стабілізація оптимуму рН середовища, його високої буферності. 6. Середовища повинні мати певну вязкість, густину 7. Ізотонічність, прозорість, обовязково стерильність

П р о с т іС к л а д н і Рідкі: ПВ, МПБ Щільні: МПЖ, МПА Спеціальні: цукров. МПА, МПБ, сиров. МПА, кров. МПА, асцит. МПА Збагачення, накопичення: селенітовий МПБ, с-ща Мюллера, Кауффмана, Кітт-Тароцці Елективні: Ру, 1% лужна ПВ Диференціально-діагностичні: 1.для визначення цукролітичних властивостей (с-ща Гіса, Ендо, Левіна, Плоскірева) 2. для визначення протеолітичних властивостей (згорнута сироватка, МПЖ, кусочки мязів) 3. для визначення пептолітичних властивостей (МПБ, ПВ) 4. для визначення гемолітичних властивостей (кров. МПА) 5. для визначення редукуючих властивостей (середовища з різними барвниками) Класифікація живильних середовищ

Різноманіття форм і поверхні колоній

Різні види поверхні бактеріальних колоній

1 - макро- i мiкроскопiчне вивчення дослiджуваного матерiалу i посiв на щiльнi поживнi середовища для одержання окремих колонiй; 2 - макро- i мiкроскопiчне вивчення колонiй i пересiв на скошений агар; 3 - перевiрка чистоти виділеної культури та її iдентифiкацiя; 4 - висновок про видiлену культуру. Етапи видiлення чистих культур аеробних мiкроорганiзмiв:

Етапи виділення чистої культури бактерій

Методи одержання ізольованих колоній

Біохімічні властивості бактерій