Языки и методы программирования Преподаватель – доцент каф. ИТиМПИ Кузнецова Е.М. Лекция 6.

Презентация:



Advertisements
Похожие презентации
ЗАПИСЬ ВСПОМОГАТЕЛЬНЫХ АЛГОРИТМОВ НА ЯЗЫКЕ Паскаль НАЧАЛА ПРОГРАММИРОВАНИЯ.
Advertisements

РЕКУРСИЯ РЕКУРРЕНТНЫЕ СООТНОШЕНИЯ У попа была собака - он ее любил. Она съела кусок мяса - он ее убил. Вырыл ямку - закопал, Взял дощечку – написал: У.
Процедуры и функции Вербицкая Ольга Владимировна, Заозерная школа 16.
PROGRAM example1; const m=100; var a : ARRAY [1.. m] of INTEGER; i,k,n,q : INTEGER; BEGIN readln (n); randomize; WRITELN('Полученный массив:' ); FOR i.
Рекурсия Презентация разработана учителем информатики лицея 124 г.Барнаула Воловиковой Л.Л.
Массивы Материалы к урокам по программированию. МАССИВ это УПОРЯДОЧЕННАЯ последовательность данных ОДНОГО ТИПА. Массивы относятся к структурированным.
Циклические программы Информатика и ИКТ 9 класс Гимназия 1 г. Новокуйбышевска Учитель информатики: Красакова О.Н.
Чтобы найти максимальный элемент в массиве и потом производить с ним какие-либо действия, нужно узнать его номер (индекс - I). Для этого вначале будем.
Массивы Массив используется для обработки упорядоченного набора величин одного типа, обозначенного одним именем. Доступ к элементам массива осуществляется.
Чтобы найти максимальный элемент в массиве и потом производить с ним какие-либо действия, нужно узнать его номер (индекс - I).Чтобы найти максимальный.
Задача Разбить предложение по словам. В предложении могут быть знаки «.», «!», «?» и «,»
1 Рекурсивное программирование Рекурсия – это метод, сводящий общую задачу к некоторым задачам более узкого, простого типа Рекурсивный алгоритм – это алгоритм,
Множества. Внутреннее представление.. Механизм внутреннего представления Каждое значение базового типа представляется одним битом. В память заносится.
1 Программирование на языке Паскаль Максимальный элемент массива.
Что такое структурный подход в программировании? Как он реализуется в ЯП Паскаль? Что такое процедура? Кто дает название процедуре? Где записывается процедура?
Ханойская башня, или Один замечательный алгоритм.
1 Программирование на языке Паскаль Тема 2. Максимальный элемент массива.
Основы программирования. 2 Циклы Цикл – это многократное выполнение одинаковой последовательности действий. цикл с известным числом шагов цикл с неизвестным.
Массивы 9 класс. Основные теоретические сведения Примеры решения задач.
Поиск с возвратом (Перебор с возвратом) Введение А.Г.Баханский © Программирование – вторая грамотность. А.П.Ершов.
Транксрипт:

Языки и методы программирования Преподаватель – доцент каф. ИТиМПИ Кузнецова Е.М. Лекция 6

Содержание РЕКУРСИЯ ЗАДАЧА О ХОДЕ КОНЯ ЗАДАЧА О ХАНОЙСКИХ БАШНЯХ

Рекурсия – это такой способ организации вычислительного процесса, при котором процедура или функция в ходе выполнения составляющих ее операторов обращается сама к себе.

свойства рекурсивных алгоритмов: Правильный рекурсивный алгоритм не должен создавать бесконечную последовательность вызовов самого себя. Для этого он обязательно должен содержать нерекурсивный выход, т.е. при некоторых исходных данных вычисления в алгоритме должны производиться без вызовов его самого - тривиальный случай. Определение сложного случая в терминах более простого. При любых исходных данных нерекурсивный выход должен достигаться за конечное число рекурсивных вызовов. Для этого каждый новый вызов рекурсивного алгоритма должен решать более простую задачу, т.е. рекурсивный алгоритм должен содержать определение некоторого сложного случая в терминах более простого случая.

Рекурсия Н.Вирт отмечает, что "...мощность рекурсии связана с тем, что она позволяет определить бесконечное множество объектов с помощью конечного высказывания".... обычно понятие рекурсивных алгоритмов объяснялось на неподходящих примерах, из-за чего возникло широкое распространенное предубеждение против рекурсии в программировании.

Пример 1. определение факториала. n!=1*2*3*...*n. Граничным условием в данном случае является n

Пример 2. Определим функцию K(n), которая возвращает количество цифр в заданном натуральном числе n: function K(N:Longint):Byte; begin if N

Пример 3. Вычислить сумму элементов линейного массива сумма равна нулю, если количество элементов равно нулю, и сумме всех предыдущих элементов плюс последний, если количество элементов не равно нулю. program Rec2; Type LinMas = Array[1..100] Of Integer; Var A : LinMas; I, N : Byte; {Рекурсивная функция} function Summa(N : Byte; A: LinMas) : Integer; begin if N = 0 then Summa := 0 else Summa := A[N] + Summa(N - 1, A) end;

Пример 3. Вычислить сумму элементов линейного массива {Основная программа} begin write('Количество элементов массива? '); readln(N); randomize; for I := 1 to N do begin A[I] := random(21); write(A[I] : 4) end; writeln; writeln('Сумма: ', Summa(N, A)) end.

Пример 4. Определить, является ли заданная строка палиндромом, т.е. читается одинаково слева направо и справа налево. Идея решения заключается в просмотре строки одновременно слева направо и справа налево и сравнении соответствующих символов. Граничное условие строка является палиндромом, если она пустая или состоит из одного символа.

program Palindrom; var S : String; {Рекурсивная функция} function Pal(S: String) : Boolean; begin if length(S)

Задача о ходе коня задача о нахождении маршрута шахматного коня, проходящего через все поля доски по одному разу. Эта задача известна по крайней мере с XVIII века. Леонард Эйлер посвятил ей большую работу «Решение одного любопытного вопроса, который, кажется, не подчиняется никакому исследованию» (датируется 26 апреля 1757 года). Помимо рассмотрения задачи для коня, Эйлер разобрал аналогичные задачи и для других фигур. С тех пор обобщённая задача носит имя «нахождение эйлерова маршрута».

Маршрут Яниша Этот маршрут примечателен во многих отношениях: он образует полумагический квадрат, а при повороте доски на 180° первая половина маршрута (номера с 1 до 32) переходит во вторую (номера с 33 по 64).

Одной из эвристических стратегий алгоритма может быть следующая. Haчиная с произвольного поля i,j (i = 4,j = 4), пытаемся пойти на поле *1, если невозможно, то на поле *2; при неудаче - на поле *3 и т.д. по часовой стрелке

Program Tur_Konja; var a: array[1..8,1..8] of integer; im, jm :array(l..8] of integer; i, j, k, n, inac, jnac: integer; inext, jnext: integer; begin {инициализация шахматной доски} for i:=1 to 8 do for j:=l to 8 do a[i,j]:=0; im[l]:=-2; jm[l]:=l.; im[2]:=-1; jm[2]:=2; im[3]:=1; jm[3]:=2; im[4]:=2; jm[4):=l; im[5]:=2; jm[5]:=-1; im[6]:=1; jm(6]:=-2; im[7]:=-l; jm[7]:=-2; im[8]:=-2; jm[8]:=-l; write('введи начальные координаты коня 0

while k

В случае отсутствия возможности очередного хода осуществляется возврат коня на предыдущее поле и возобновление поиска дальнейшего маршрута по другому пути. Подобный процесс называют возвратом procedure RETR; begin инициализация начального хода repeat выбор очередного хода if подходит then его запись; if решение не полное then RETR; if неудача then стирание хода и возврат на предыдущий until удача or нет хода end.

program tur; var i, j, ii, jj, n, nn: integer; q: boolean; dx, dy:array[1..8] of integer; h:array[1..8,1..8] of integer; {рекурсивная процедура - попытка сделать ход} procedure try(i,x,у:integer; var q:boolean); var k, u, v: integer; ql: boolean; begin k:=0; repeat k:=k+l; ql:=false; u:=x+dx[k]; v:=y+dy(k]; if ( (1

{для отладки и наблюдения процесса поиска с возвратом} for ii:=l to n do begin for jj:= 1 to n do write(h[ii,jj]:5); writeln; end; readin; if i

end; until (ql) or (k=8); q:=ql end; { конец процедуры} begin dx[l] =2: dx[2]:=l; dx[3]:=-l; dx[4]:=-2; dx[5]:=-2; dx[6] =-1: dx[7]:=l; dx[8]:=2; dy[l]:=l; dy[2]:=2; dy[3] =2: dy[4]:=l; dy[5]:=-l; dy[6]:=-2; dy[7] =-2: dy[8]:=-1; write ('введи n: '); readln(n);

for i =1 to n do for j:=1 to n do h[i,j]:=0; write; ('введи i,j : '); readln(i,j); nn:=n*n; h[i,j]:=l; try(2,i,j,q); if q then begin for i:=l to n do begin for j:= 1 to n do write(h[i,j]:5); writeln; end; else writeln( 'нет маршрута'); readln end.

Ханойская башня Ханойские Башни это головоломка, которую в 1883 г. придумал французский математик Эдуард Люка. есть три стержня и восемь дисков разных диаметров, вначале все диски собраны на одном стержне так, что меньшие диски лежат на больших. Люка предлагал переложить все диски с первого стержня на третий, используя второй. При этом следует соблюдать следующее правило: диски можно перекладывать с одного стержня на другой, при этом нельзя класть диск поверх диска меньшего радиуса.

Ханойская башня Ради повышения интереса к своей головоломке Люка придумал легенду, повествующую про башню Брамы, увеличенную копию Ханойской. Эта башня состояла то ли из 50, то ли из 64 золотых дисков, а стержни были вырезаны из алмаза. Башни Брамы были созданы при Сотворении мира, и с того времени жрецы в храме трудятся, перекладывая диски.

для того чтобы перенести самый большой диск, нужно сначала перенести все диски кроме последнего на второй стержень, потом перенести самый большой на третий, после чего останется перенести все остальные диски со второго на третий.

Задачу о переносе N-1 диска решается аналогично, только поменяем стержни местами (при первом переносе конечным стержнем будем считать второй, а не третий, при втором переносе начальным вместо первого будет второй). Задача о N-1 дисков сводится к задаче о N-2 дисков, та в свою очередь к N-3 дискам, и так вплоть до 1 диска.

program hanoy; var n:integer; procedure hanoi (n,a,b,c:integer); begin if n=1 then begin hanoi (1,a,b,c); writeln (a,'->', b); exit; end else

begin hanoi (n-1,a,c,b); hanoi (n-1,c,b,a); end; begin clrscr; writeln ('Введите количество колец'); readln (n); hanoi (n,1,2,3); writeln ('Нажмите ENTER для выхода'); readln; end.