Комплексные числа

Презентация:



Advertisements
Похожие презентации
Комплексные числа. Основные понятия Комплексным числом z называют выражение: где а и b – действительные числа, i – мнимая единица, определяемая равенством:
Advertisements

Комплексные числа. Кафедра Алгебры, Геометрии и Анализа. ДВФУ.
К о м п л е к с н ы е ч и с л а. Вычислите: Мнимая единица Мнимая единица i – начальная буква французского слова imaginaire – «мнимый»
КОМПЛЕКСНЫЕ ЧИСЛА. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Определение. Комплексным числом z называется выражение, где a и b – действительные числа, Определение. Комплексным.
Комплексные числа. Действия над комплексными числами Возведение компл Ексного в степень Извлечение кубического корня из компл Ексного числа Разяпов Рим.
Множество комплексных чисел.. Комплексным числом называется выражение вида а + bi, в котором а и b – действительные числа, а i – некоторый символ такой,
После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить.
Доклад по теме:Комплексные числа и действия над ними ВЫПОЛНИЛ СТУДЕНТ ГРУППЫ 2Г31 МИШАНЬКИН А.Ю.
Практическая работа «Действия с комплексными числами»
Комплексные числа. Комплексным числом называется число вида где x и y – вещественные числа.
Комплексные числа и арифметические операции над ними.
Комплексные числа ГБОУ СОШ 1353 учитель математики Г. В. Сазыкина.
Комплексные числа МБОУ СОШ 99 г.о.Самара Класс: 10 Учебник: Алгебра и начало анализа. А. Г. Мордкович, П. В. Семенов (профильный уровень) (профильный уровень)
Московский государственный университет им. М.В. Ломоносова Физический факультет Кафедра математики Виктор Юрьевич Попов Лекции по теории функции комплексной.
Комплексные числа МАОУ «Гимназия 1» Пермь, 2014 Медведева Людмила Петровна, учитель математики.
Тема: КОМПЛЕКСНЫЕ ЧИСЛА МБОУ лицей 1 г. Комсомольск-на-Амуре Чупрова О.С.
Комплексные числа МБОУ Большемаресевская СОШ Мордовия Класс: 11 Учебник: Алгебра и начало анализа. Ю. М. Колягин и др. (профильный уровень) (профильный.
Комплексные числа.
Действия с комплексными числами в алгебраической форме. (а +вi) + (с + di) = (а + с) + (в + d)i (а +вi) (с + di) = (ас – вd) + (аd + вс)i а +вi с + di.
Геометрия комплексных чисел. Подготовили: Двалашвили Т. Беззубова А. Абатуров О. Аседулов Т. Гатиятов И.
Транксрипт:

Комплексные числа Основные понятия Геометрическое изображение комплексных чисел Тригонометрическая форма записи комплексных чисел Действия над комплексными числами Показательная форма комплексного числа

Основные понятия Комплексным числом z называют выражение: где а и b – действительные числа, i – мнимая единица, определяемая равенством: а называется действительной частью числа z, b – мнимой частью. Их обозначают так: Если а = 0, то число i b называется чисто мнимым. Если b = 0, то получается действительное число а. Два комплексных числа, отличающиеся только знаком мнимой части, называются сопряженными:

Геометрическое изображение комплексных чисел Всякое комплексное число можно изобразить на плоскости XOY в виде точки A(a; b). Плоскость, на которой изображаются комплексные числа, называют плоскостью комплексной переменной. y 0 х A(a; b) z a b Точкам, лежащим на оси OX, соответствуют действительные числа ( b = 0 ), поэтому ось OX называют действительной осью. Точкам, лежащим на оси OY, соответствуют чисто мнимые числа ( a = 0 ), поэтому ось OY называют мнимой осью. Иногда удобно считать геометрическим изображением комплексного числа z вектор

Тригонометрическая форма записи комплексных чисел Тогда имеют место равенства: Следовательно, комплексное число z можно представить в виде: y 0 х A(a; b) z a b Обозначим через r модуль вектора, через φ угол между вектором и положительным направлением оси OX. φ Тригонометрическая форма записи комплексного числа Модуль комплексного числа Аргумент комплексного числа Аргумент комплексного числа z считается положительным, если он отсчитывается от положительного направления оси OX против часовой стрелки. Очевидно, что φ определяется не однозначно, а с точностью до слагаемого r

Действия над комплексными числами Равенство комплексных чисел. 1 Два комплексных числа и называются равными :, если Комплексное число равно нулю, тогда и только тогда, когда 2 Сложение и вычитание комплексных чисел. Суммой (разностью) комплексных чисел и называется комплексное число, определяемое равенством:

Действия над комплексными числами 3 Умножение комплексных чисел. Сложение и вычитание комплексных чисел, изображенных векторами производится по правилу сложения или вычитания векторов: y 0 х z z1z1 z2z2 z 1 + z 2 z 1 - z 2 Умножением комплексных чисел и называется число, получаемое при умножении этих чисел по правилам алгебры как двучлены, учитывая что При любом целом k:

Действия над комплексными числами На основании этого правила получим: тогда произведение находится по формуле: Если комплексные числа заданы в тригонометрической форме: Произведение сопряженных комплексных чисел:

Действия над комплексными числами 4 Деление комплексных чисел. Чтобы разделить на необходимо умножить делимое и делитель на число, сопряженное делителю: Если комплексные числа заданы в тригонометрической форме:

Действия над комплексными числами Найти произведение и частное комплексных чисел: = -1

Действия над комплексными числами 5 Возведение в степень комплексного числа. При возведении комплексного числа в целую положительную степень модуль возводится в эту степень, а аргумент умножается на показатель степени (формула Муавра) 6 Извлечение корня из комплексного числа. Корень n – ой степени из комплексного числа находится по формуле: Арифметическое значение корня из положительного числа r

Действия над комплексными числами Придавая k значения 0, 1, 2, …,n –1, получим n различных значений корня. Для других значений k аргументы будут отличаться от полученных на число, кратное 2π, и, следовательно будут получаться значения корня, совпадающие с рассмотренными. Итак, корень n – ой степени из комплексного числа имеет n различных значений. Корень n – ой степени из действительного числа также имеет n значений, так как действительное число – частный случай комплексного числа и может быть представлено в тригонометрической форме:

Действия над комплексными числами Найти все значения кубического корня из единицы A В С y х z

Показательная форма комплексного числа Рассмотрим показательную функцию от комплексной переменной z. Комплексные значения функции w определяются по формуле: Пример: Пусть Если х и y – действительные переменные, то z называется комплексной переменной. (1)

Показательная форма комплексного числа Если в формуле (1) положим x = 0, то получим: Эта формула называется формулой Эйлера, выражающая показательную функцию с мнимым показателем через тригонометрические функции. (2) Заменим в формуле (2) y на – y : (3) Складывая и вычитая равенства (2) и (3) получим :

Показательная форма комплексного числа Представим комплексное число z в тригонометрической форме:: По формуле Эйлера: Следовательно, всякое комплексное число можно представить в показательной форме: Действия над комплексными числами в показательной форме: Пусть имеем: Тогда: