Перпендикуляр и наклонная Урок геометрии в 10 классе.

Презентация:



Advertisements
Похожие презентации
Перпендикуляр и наклонная. Теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна.
Advertisements

Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
1.Ввести понятие расстояния от точки до плоскости. 2. Доказать теорему о трех перпендикулярах. 3. Научиться применять теорему о трех перпендикулярах при.
Перпендикуляр и наклонная mathvideourok.moy.su. А Н С отрезок АН называется перпендикуляром, опущенным из точки А на плоскость точка Н основание этого.
Презентация к уроку по геометрии (10 класс) по теме: Презентация Перпендикуляр и наклонная, 10 класс
Определения Перпендикуляром, опущенным из данной точки на данную прямую, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на.
Перпендикуляр и наклонная. Угол между прямой и плоскостью
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Расстояние от точки до прямой. Расстояние между параллельными прямыми. Урок 51 По данной теме урок 12 Классная работа
Расстояние от точки до плоскости А Н М α Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α. Точка Н называется основанием перпендикуляра.
Г.А. Астанкова Г.А. Астанкова МОУ «Ремзаводская сош» МОУ «Ремзаводская сош» с. Павловск с. Павловск.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
МОУ Засосенская СОШ им.Н.Л. Яценко Презентация по геометрии на тему: «Перпендикуляр и наклонные. Угол между прямой и плоскостью» Выполнила: ученица 10а.
Тема урока: Расстояние от точки до плоскости Учитель: Емельянова Г.А.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
1.Прямая и окружность имеют две общие точки (Расстояние от центра окружности до прямой меньше радиуса: d < r) 2. Прямая и окружность имеют одну общую.
Транксрипт:

Перпендикуляр и наклонная Урок геометрии в 10 классе

На одном из предыдущих уроков вы познакомились с понятием проекции точки на данную плоскость параллельно данной прямой. На этом уроке вы продолжите изучение прямых и плоскостей; узнаете, как находится угол между прямой и плоскостью. Вы познакомитесь с понятием ортогональной проекции на плоскость и рассмотрите ее свойства. На уроке будут даны определения расстояния от точки до плоскости и от точки до прямой, угла между прямой и плоскостью. Будет доказана знаменитая теорема о трех перпендикулярах.

Ортогональной проекцией точки А на данную плоскость называется проекция точки на эту плоскость параллельно прямой, перпендикулярной этой плоскости. Ортогональная проекция фигуры на данную плоскость p состоит из ортогональных проекций на плоскость p всех точек этой фигуры. Ортогональная проекция часто используется для изображения пространственных тел на плоскости, особенно в технических чертежах. Она дает более реалистическое изображение, чем произвольная параллельная проекция, особенно круглых тел. Ортогональная проекция точки и фигуры. Ортогональная проекция детали.

Пусть через точку А, не принадлежащую плоскости p, проведена прямая, перпендикулярная этой плоскости и пересекающая ее в точке В. Тогда отрезок АВ называется перпендикуляром, опущенным из точки А на эту плоскость, а сама точка В основанием этого перпендикуляра. Любой отрезок АС, где С произвольная точка плоскости p, отличная от В, называется наклонной к этой плоскости. Заметим, что точка В в этом определении является ортогональной проекцией точки А, а отрезок АС ортогональной проекцией наклонной AВ. Ортогональные проекции обладают всеми свойствами обычных параллельных проекций, но имеют и ряд новых свойств. Перпендикуляр и наклонная Перпендикуляр и наклонная.

Свойства ортогональной проекции Пусть из одной точки к плоскости проведены перпендикуляр и несколько наклонных. Тогда справедливы следующие утверждения. 1. Любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость. 2. Равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны. 3. Одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной.

Свойства ортогональной проекции Доказательство. Пусть из точки А к плоскости p проведены перпендикуляр АВ и две наклонные АС и AD; тогда отрезки ВС и BD ортогональные проекции этих отрезков на плоскость p. Докажем первое утверждение: любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость. Рассмотрим, например, наклонную AС и треугольник ABC, образованный перпендикуляром AВ, этой наклонной AС, и ее ортогональной проекцией ВС. Этот треугольник прямоугольный с прямым углом в вершине В и гипотенузой AС, которая, как мы знаем из планиметрии, длиннее каждого из катетов, т.е. и перпендикуляра AВ, и проекции ВС. Из точки А к плоскости pi проведены перпендикуляр АВ и две наклонные AC и AD.

Свойства ортогональной проекции Теперь докажем второе утверждение, а именно: равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны. Рассмотрим прямоугольные треугольники AВС и ABD. Они имеют общий катет AВ. Если наклонные AС и AD равны, то прямоугольные треугольники AВС и AВD равны по катету и гипотенузе, и тогда BC=BD. Обратно, если равны проекции ВС и BD, то эти же треугольники равны по двум катетам, и тогда у них равны и гипотенузы AС и AD. Треугольники ABC и ABD равны по катету и гипотенузе.

Свойства ортогональной проекции Докажем третье утверждение: одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной. Пусть, например, ВС > BD. Отложим на отрезке ВС точку Е такую, что BD=BE. Тогда и AD=AE. В треугольнике АСЕ угол AEC тупой и поэтому больше угла ACE, следовательно, сторона АС больше стороны АЕ, равной AD. Обратно, пусть АС > AD. Возможны три случая: a) BC=BD; б) ВС BD. Если BC=BD, то по доказанному выше в пункте 2, AC=AD, что противоречит условию. Если ВС BD. Теорема доказана. Если ВС больше BD, то АС больше стороны АЕ, равной AD.

Расстояние от точки до плоскости Расстоянием от точки до плоскости (не проходящей через эту точку) называется длина перпендикуляра, опущенного из точки на эту плоскость. Из теоремы о свойствах ортогональной проекции следует, что расстояние от точки А до плоскости pi равно наименьшему расстоянию от точки А до точек этой плоскости.

Свойство расстояний от разных точек до плоскости Замечание 1 (свойство расстоянии от разных точек до плоскости). Пусть две точки А и В не принадлежат плоскости pi, а прямая АВ пересекает плоскость pi в точке С. Тогда расстояния от точек А и В до плоскости pi относятся как отрезки АС и ВС:

Доказательство: Рассмотрим два случая. В случае 1 точки А и В находятся по одну сторону от плоскости pi. Рассмотрим ортогональные проекции точек А и В на плоскость точки А 1 и B 1 соответственно. Тогда прямая A 1 B 1 является ортогональной проекцией прямой AВ и проходит через точку С. В плоскости, проходящей через прямые AВ и А 1 В 1, прямоугольные треугольники AA 1 С и BB 1 C подобны, и поэтому их катеты пропорциональны гипотенузам: Прямоугольные треугольники AA 1 C и ВВ 1 С подобны. Случай 2, когда точки А и В расположены по разную сторону от плоскости, разберите самостоятельно. Замечание 1 доказано.

Замечание 2 (свойство расстояния от середины отрезка до плоскости). Пусть расстояния от точек А и B до плоскости pi равны а и b соответственно. Тогда расстояние от середины С отрезка АВ до этой плоскости равно: Свойство расстояния от середины отрезка до плоскости Tочки A и B расположены по одну сторону от если точки А и B расположены по одну сторону от плоскости pi если точки A и B расположены по одну сторону от плоскости pi; если точки A и B расположены по одну сторону от если точки А и B расположены по разные стороны от плоскости pi

Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна ее ортогональной проекции. Доказательство. Пусть даны плоскость pi, перпендикуляр АВ на эту плоскость, наклонная АС, и прямая m в плоскости pi. Нам надо доказать два взаимно обратных утверждения. Первое утверждение: если прямая m перпендикулярна наклонной АС, то она перпендикулярна и ее ортогональной проекции ВС. И обратно: если прямая m перпендикулярна ортогональной проекции ВС, то она перпендикулярна и наклонной АС. Перпендикуляр АВ к плоскость pi, наклонная АС и прямая т в плоскости pi. Теорема о трех перпендикулярах

Прямая m перпендикулярна плоскости АВС.

Пусть даны плоскость и наклонная прямая. Углом между прямой и плоскостью называется угол между прямой и ее ортогональной проекцией на эту плоскость. Если прямая параллельна плоскости, то угол между ней и плоскостью считается равным нулю. Если прямая перпендикулярна плоскости, то угол между ней и плоскостью прямой, т. е. равен 90°. Угол между наклонной и плоскостью Угол между наклонной и ее ортогональной проекцией на плоскость.

Перпендикуляр, наклонная и ее ортогональная проекция образуют прямоугольный треугольник.

Автор: Аверкина Т.П., учитель МОУ «Тархановская СОШ» Ичалковского района РМ