Органические вещества клетки: Белки Жиры Углеводы Нуклеиновые кислоты.

Презентация:



Advertisements
Похожие презентации
ОРГАНИЧЕСКИЕ ВЕЩЕСТВА КЛЕТКИ. Цель урока: Изучить особенности строения органических веществ (белки, жиры, углеводы) Изучить особенности строения органических.
Advertisements

Нуклеиновые кислоты Задачи: изучить структуру и функции ДНК и РНК, научиться сравнивать строение, состав нуклеиновых кислот, выявлять причины наблюдаемых.
Тема 2 Строение клетки. Химический состав.. Положения клеточной теории: Положения клеточной теории: Немецкие ботаник Шлейдан и физиолог Шванн создали.
Химический состав клетки В состав клетки входит около 70 химических элементов периодической системы Д.И.Менделеева, встречающихся в неживой природе.
Углеводы - сложные органические соединения, которые состоят из углерода, водорода и воды. «Угле-воды», уголь и вода, Общая формула - Сn(H2O)m.
Строение и функции белков «Жизнь есть способ существования белковых тел…» (Ф.Энгельс)
Органические молекулы - углеводы. Выберите правильный ответ 1. Белки по составу делятся на глобулярные, фибриллярные и промежуточные. 2. Мономером белка.
УГЛЕВОДЫ, ИХ КЛАССИФИКАЦИЯ И ЗНАЧЕНИЕ Набокова Оксана Владимировна учитель химии МКОУ « В ( С ) ОШ 4 при ИК »
Белки (полипептиды) биополимеры, построенные из остатков -аминокислот, соединенных пептидными связями. Пептидной связью называют амидную связь –CO–NH–,
Часть 1 (Липиды / углеводы / белки). Органические вещества клетки белки липиды углеводы Нуклеиновые кислоты АТФ.
Выполнила: учитель химии,биологии Чернобровкина Елена Валентиновна МБОУ «Зеленовская СОШ» Фроловский район Волгоградская область.
Белки Жизнь – это способ существования белковых тел. Ф.Энгельс.
Нуклеиновые кислоты.. Нуклеиновые кислоты (от лат. nucleus ядро) высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные.
Основные разделы темы «Углеводы» 1.Общие сведения об углеводах 2.Моносахариды 3.Дисахариды 4.Полисахариды.
Вишнякова Н.В. МОУ Брединская СОШ1. Биополимеры класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки,
Углеводы. Строение и функции. Химический состав клетки.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 4» П Р Е З Е Н Т А Ц И Я по химии на тему «Вещества, входящие в состав.
это обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углеродвода).
Органические вещества клетки Белки 20-30% Углеводы 0,2-2,0% Липиды 1-5% Органические полимеры с большой молекулярной массой, состоящие из 20 аминокислот.
Углеводы. Строение и функции МБОУ Краснозерская СОШ 1 Подготовил :Пушкина Н.Н.
Транксрипт:

Органические вещества клетки: Белки Жиры Углеводы Нуклеиновые кислоты

Белки БЕЛКИ, высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L-a-аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Название «белки» впервые было дано веществу птичьих яиц, свертывающемуся при нагревании в белую нерастворимую массу. Позднее этот термин был распространен на другие вещества с подобными свойствами, выделенные из животных и растений.

Многие белки построены из 20 a-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связьюСОNH, которая образуется карбоксильной и a-аминогруппой соседних аминокислотных остатков (см. рис.): две аминокислоты образуют дипептид, в котором остаются свободными концевые карбоксильная (СООН) и аминогруппа (H2N), к которым могут присоединяться новые аминокислоты, образуя полипептидную цепь. Участок цепи, на котором находится концевая Н2N- группа, называют N-концевым, а противоположный ему С-концевым. Огромное разнообразие белков определяется последовательностью расположения и количеством входящих в них аминокислотных остатков. Хотя четкого разграничения не существует, короткие цепи принято называть пептидами или олигопептидами, а под полипептидами (белками) понимают обычно цепи, состоящие из 50 и более аминокислот.

Функции белков Катализаторы (белки – ферменты) Регуляторы биологических процессов (ферменты) Транспортная (гемоглобин) Двигательная (актин, миозин) Строительная (кератин, коллаген) Энергетическая – 1 г белка – 17кДж (казеин, яичный альбумин) Защитная (иммуноглобулины, интерферон) Антибиотики (неокарциностатин) Токсины (дифтерийный) Рецепторные белки (родопсин, холинорецепторы)

Структура белка Первичная(линейная):состоит из пептидной связи (инсулин) Вторичная (спиральная):имеются пептидная и водородная связи (волосы, когти и ногти) Третичная : трехмерное расположение вторичной структуры молекулы белка. Связи : пептидная, ионная, водородная, дисульфидная, гидрофобная (клеточная мембрана) Четвертичная : образуется из 2-3-х глобул (третичных структур) (гемоглобин)

Денатурация белков Сравнительно слабые связи, ответственные за стабилизацию вторичной, третичной и четвертичной структур белка, легко разрушаются, что сопровождается потерей его биологической активности. Разрушение исходной (нативной) структуры белка, называемое денатурацией, происходит в присутствии кислот и оснований, при нагревании, изменении ионной силы и других воздействиях. Как правило, денатурированные белки плохо или совсем не растворяются в воде. При непродолжительном действии и быстром устранении денатурирующих факторов возможна ренатурация белка с полным или частичным восстановлением исходной структуры и биологических свойств.

Значение белков в питании Белки - важнейшие компоненты пищи животных и человека. Пищевая ценность белков определяется содержанием в них незаменимых аминокислот, которые в самом организме не образуются. В этом отношении растительные белки менее ценны, чем животные: они беднее лизином, метионином и триптофаном, труднее перевариваются в желудочно- кишечном тракте. Отсутствие незаменимых аминокислот в пище приводит к тяжелым нарушениям азотистого обмена. В процессе пищеварения белки расщепляются до свободных аминокислот, которые после всасывания в кишечнике поступают в кровь и разносятся ко всем клеткам. Часть из них распадается до простых соединений с выделением энергии, используемой на разные нужды клеткой, а часть идет на синтез новых белков, свойственных данному организму.

Углеводы

УГЛЕ˜ОДЫ – органические соединения, химическая структура которых часто отвечает общей формуле Cn(H2O)n(т. е. углерод и вода, отсюда название). Углеводы первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы крахмал, гликоген). Различают моно-, олиго- и полисахариды, а также сложные углеводы гликопротеиды, гликолипиды, гликозиды и др.

МОНОСАХАРИДЫ, простые углеводы, содержащие гидроксильные и альдегидную (альдозы) или кетонную (кетозы) группы. По числу атомов углерода различают триозы, тетрозы, пентозы и т. д. В живых организмах в свободном виде (кроме глюкозы и фруктозы) встречаются редко. В составе сложных углеводов (гликозидов, олиго- и полисахаридов и др.) присутствуют во всех живых клетках. ДИСАХАРИДЫ, углеводы, образованные остатками двух моносахаридов. В животных и растительных организмах распространены дисахариды: сахароза, лактоза, мальтоза, трегалоза. ПОЛИСАХАРИДЫ, высокомолекулярные углеводы, образованные остатками моносахаридов (глюкозы, фруктозы и др.) или их производных (напр., аминосахаров). Присутствуют во всех организмах, выполняя функции запасных (крахмал, гликоген), опорных (целлюлоза, хитин), защитных (камеди, слизи) веществ. Участвуют в иммунных реакциях, обеспечивают сцепление клеток в тканях растений и животных.

Функции углеводов Структурная (входят в состав оболочек клеток и субклеточных образований) Опорная (у растений) Резервная (запас гликогена и крахмала) Энергетическая Сигнальная (нервные импульсы) участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).

Жиры ЖИРЫ, органические соединения, в основном сложные эфиры глицерина и одноосновных жирных кислот (триглицериды); относятся к липидам. Один из основных компонентов клеток и тканей живых организмов. Источник энергии в организме; калорийность чистого жира 3770 кДж/100 г. Природные жиры подразделяются на жиры животные и масла растительные.

Функции жиров: Структурная (входят в состав клеточных мембран) Энергетическая (1г кДж энергии) Запасающая Терморегуляторная Источник метаболической (эндогенной) воды Защитно-механическая (защита от повреждений) Каталитическая (входят в состав ферментов)

Нуклеиновые кислоты НУКЛЕИНОВЫЕ КИСЛОТЫ (полинуклеотиды), высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах из поколения в поколение. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Последовательность нуклеотидов в нуклеиновых кислотах определяет их первичную структуру.

Химическая структура. В зависимости от химической структуры углеводного компонента нуклеиновые кислоты делят на два типа: дезоксирибонуклеиновые и рибонуклеиновые; первые содержат дезоксирибозу, а вторые рибозу. Азотистые основания являются производными двух типов соединений пуринов и пиримидинов. Основаниями они называются потому, что обладают основными (щелочными) свойствами, хотя и слабыми. В составе ДНК встречаются два пуриновых аденин (А) и гуанин (G) и два пиримидиновых цитозин (С) и тимин (Т) основания. В составе РНК вместо тимина обычно встречается урацил (U). Согласно правилам международной номенклатуры эти основания записываются начальными буквами их названий на английском языке, хотя в русскоязычной литературе часто используются начальные буквы русских названий; соответственно А, Г, Ц, Т и У.

В молекулах нуклеиновых кислот нуклеотиды связаны между собой фосфодиэфирными связями (фосфатными «мостиками»), образующимися между остатками сахаров соседних нуклеотидов. Таким образом, цепи нуклеиновых кислот выглядят как остов из монотонно чередующихся фосфатных и пептозных групп, а основания можно рассматривать как присоединенные к нему боковые группы. Фосфатные остатки остова при физиологических значениях рН заряжены отрицательно. Пуриновые и пиримидиновые основания плохо растворимы в воде, то есть гидрофобны. О свойствах отдельных типов нуклеиновых кислот и их роли в процессах жизнедеятельности смотри в статьях Дезоксирибонуклеиновые кислоты и Рибонуклеиновые кислоты. Строение молекул ДНК и РНК

ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (ДНК), нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу. ДНК является основной составляющей хромосом всех живых организмов; ею представлены гены всех про- и эукариот, а также геномы многих вирусов. В нуклеотидной последовательности ДНК записана (кодирована) генетическая информация о всех признаках вида и особенностях особи (индивидуума) ее генотип. ДНК регулирует биосинтез компонентов клеток и тканей, определяет деятельность организма в течение всей его жизни.

РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (РНК), семейство нуклеиновых кислот, содержащих в качестве углеводного компонента остаток рибозы. PНK присутствуют во всех живых клетках, участвуя в процессах, связанных с передачей генетической информации от дезоксирибонуклеиновой кислоты(ДНК) к белку. Из РНК образованы геномы многих вирусов. За редким исключением все PНK состоят из одиночных полинуклеотидных цепей. Их многомерные единицы монорибонуклеотиды содержат пуриновые аденин и гуанин и пиримидиновые основания цитозин и урацил.