1/32 Institute for Theoretical and Applied Electromagnetics RAS Moscow, 125412, Russia. Tel: +7(495)485-9344; fax: +7(495)484-2633; e-mail: nanocom@yandex.ru.

Презентация:



Advertisements
Похожие презентации
Institute for Theoretical and Applied Electromagnetics RAS Moscow, , Russia. Tel: +7(495) ; fax: +7(495) ;
Advertisements


Типовые расчёты Растворы
Национальная академия наук Республики Беларусь Институт физики им. Б.И. Степанова Космос-НТ, Программное мероприятие 3.4, Договор 232, доп. согл
Формирование и исследование наноразмерных объектов с помощью экспериментальных методик развитых в НИИЯФ МГУ Автор: Черн ых Павел Николаевич..
Методы ионно-лучевой обработки и нанотехнологических исследований Сарымсаков Р. Г. ИУ4-73.
1 ЭЛЕКТРОМАГНИТНЫЕ ХАРАКТЕРИСТИКИ ДВУХСЛОЙНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ КАРБОНИЛЬНОГО ЖЕЛЕЗА В.А. Журавлев, В.И. Сусляев, Е.Ю. Коровин, Ю.П.
Перспективы инновационного развития технологии МДО в рамках СНГ Профессор, д.т.н. Крит Б.Л.
Институт прикладной физики РАН Производство поликристаллических алмазных пленок методом осаждения из паровой фазы Нижний Новгород, 2005г.
Модификация магнитных свойств и ближнего порядка в нанокомпозитах FeCoZr-Al 2 O 3 в результате гидрогенизации Соискатель: магистрант Ю.В. Касюк Научный.
1 Основные направления деятельности 1.Наномодифицированные полимерные композиционные материалы. 2. Защитные наноструктурированные покрытия нового поколения.

Маршрутный лист «Числа до 100» ? ? ?
Программа фундаментальных исследований Президиума РАН 27 «ОСНОВЫ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ НАНОТЕХНОЛОГИЙ И НАНОМАТЕРИАЛОВ» Раздел Программы:4. Диагностика.
1 Программа фундаментальных исследований Президиума РАН 27 «ОСНОВЫ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ НАНОТЕХНОЛОГИЙ И НАНОМАТЕРИАЛОВ» Проект 46: «Создание светоизлучающих.
Применение зондовой микроскопии в нанотехнологиях Казанский физико-технический институт им. Е.К.Завойского Казанского научного центра РАН лаборатория физики.
Чернила для изготовления оптических фильтров принтерным способом.
ХИМИЧЕСКИЕ МЕТОДЫ ФОРМИРОВАНИЯ НАНОЧАСТИЦ НАПРАВЛЕННЫЙ СИНТЕЗ Параметры синтеза: Температура (Т) Давление (Р) Состав питающей среды (х,у) Характеристика.
Ребусы Свириденковой Лизы Ученицы 6 класса «А». 10.
Динамика кварцевого генератора, 11 июня Руководитель Исполнитель Гуськов А.М. Коровайцева Е.А. Исследование влияния физических параметров на стабильность.
Транксрипт:

1/32 Institute for Theoretical and Applied Electromagnetics RAS Moscow, , Russia. Tel: +7(495) ; fax: +7(495) ; И.А. Рыжиков, ИТПЭ РАН «Некоторые проблемы инновационного развития организаций РАН».

2/32 Составляющие инновационного процесса Формирование инновационной среды: - генерация знаний; - подготовка кадров; - создание инновационных продуктов (прикладные НИР, НИОКР); - создание системы привлечения финансовых ресурсов. Необходимые условия для старта самоподдерживающегося инновационного процесса: - конкурентоспособная оплата труда; - постоянная модернизация оборудования; - наличие прибыли; - наличие базовых основных средств и оплаты труда.

3/32 Схема финансирования инновационных процессов в ИТПЭ РАН ФПСР(формирование ИС – прикладные НИР, НИОКР) Бюджет РАН(базовая оплата труда, основные средства) Гранты РФФИ, ФЦНТП ( НИР, поставка научного оборудования, мобильность, генерация знаний) Инновации (конкурентная оплата труда, апгрейд оборудования, генерация знаний, развитие персонала, создание инновационных продуктов Программы РАН (НИР) – генерация знаний, мобильность Контракты на выполнение НИОКР и оказание НТУ – формирование прибыли Подготовка специалистов

4/32 НАНОТЕХНОЛОГИЯ ФУНКЦИОНАЛЬНЫХ MATEРИАЛОВ Технология формирования с использование СЗМ Технология нанокомпозитов с заданными свойствами Нанокристаллические, нанопористые и нановолокнистые материалы Физика и химия тонкопленочных и нанодисперсных структур Нанотехнология функциональных материалов Наноразмерные монокристаллические полупроводниковые структуры Обработка и исследование поверхности Процессы микроэлектроники

5/32 НАНОТЕХНОЛОГИЯ ФУНКЦИОНАЛЬНЫХ MATEРИАЛОВ Функциональные покрытия и материалы с заданными и управляемыми оптическими и микроволновыми характеристиками Микросенсоры, микропреобразователи и микроактуаторы Элементы ближнепольной оптики и наноплазмоники Метаматериалы и нанокомпозиты Интеллектуальные материалы и покрытия

6/32 Технологии тонкопленочных структур и функциональных нанокомпозиционных материалов Основные направления исследований и разработок: Металло-полимерные магнитные тонкопленочные структуры. Прозрачные прводящие покрытия. Системы на основе тонких пленок фотополупроводников CdS-CdSe. Нанопористые тонкие пленки. Полупроводниковые химические газовые сенсоры на основе тонких пленок оксидных полупроводников. Формирование наноразмерных объектов с использованием СЗМ Интеррференционные фильтры Поглощающие и излучающие покрытия микроволнового диапазона. Функциональные и интеллектуальные материалы и покрытия. Металло-полимерные и металло-оксидные нанокомпозиты. Тонкопленочные магнито-импедансные и магнито- резистивные датчики. Наноструктурные многофункциональные тонкопленочные покрытия для водородных топливных элементов.

7/32 Технологии применяемые для создания наноструктурированных тонкопленочных материалов Резистивное, магнетронное, электронно- и ионно-лучевое распыление тонких пленок металлов, полупроводников и диэлектриков. Фотолитография. Ионно-лучевое, плазмо-химическое и химическое травление. Жидкофазное, вакуумное и газотранспортное нанесение полимеров. СЗМ с возможностью формирования наноструктур и модификации поверхности.

8/32 Au Растровая электронная микрофотография скола зарощенной меза-полосковой лазерной структуры Стадия нанесения золотого контакта Установка для исследования СТМ-стимулированных процессов наноформирования (1991 год) Установка для формирования тонкопленочных структур методом молекулярно-пучковой эпитаксии(1987 год) История: от МПЭ квантово-размерных структур к наноформированию с помощью СТМ

9/32 СТМ-изображение проводящей решетки, сформированной на поверхности SiWx в парах диэтилового эфира. Размер кадра: 1 1 мкм СТМ-изображение полосковой проводящей структуры, сформированной на поверхности SiWx в парах диэтилового эфира. Размер кадра: 1 1 мкм СТМ-изображение сопряжения круглой и прямоугольной непроводящих наноразмерных областей Наноформирование: темные стрелки направление движения иглы СТМ (1) и тока, (2) подложка, светлые стрелки потоки адсорбции и десорбции в газовой среде (3), (4) полосковая структура; а формирование рельефного проводящего полоска; b эффект расщепления, c формирование диэлектрического полоска и эффект близости

10/32 Формирование наноструктурированных пленок Fe – FeN с заданными высокочастотными свойствами на полимерных подложках методом магнетронного распыления в вакууме I. T. Iakubov, I. A. Ryzhikov at al. JMMM, 2005

11/32 0 Возможные применения: радиопоглощающие покрытия, СВЧ фильтры, резонаторы, антенны, и пр. Тонкие ферро- магнитные пленки Тонкие ферромагнитные пленки имеют наибольшую СВЧ магнитную проницаемость среди всех магнитных материалов Частота, ГГц Нанокомпозиты на основе тонких ферромагнитных пленок 70 нм Частота, ГГц A.N. Lagarkov, ETOPIM 2007 Наноструктурированные тонкопленочные композиты

12/32 Формирование пленок ITO с заданным спектром поглощения

13/32

14/32

15/32 Relative thickness alteration, %

16/32 Трехмерные наноструктурированные металл– полимерные пленки с заданными оптическими характеристиками, полученными с использованием плазмохимического травления через наноразмерную золотую маску I.A. Ryzhikov at al. BIANISOTROPICS 2004, September 22-24, Ghent, Belgium

17/32 Атомно-силовая микроскопия. Изображения поверхности образцов типа O 2 /Au/CH 4 с различным количеством циклов отжига (N)

18/32

19/32 Особенности фотопроводимости нанопористых гранулярных композитов на основе соединений CdSe – CdS. И.А. Рыжиков и др. Радиотехника и электроника, 2008

20/32 Структура композита

21/32 Схема работы управляемого радиоотражающего покрытия обтекателя антенны радиолокатора Cd(S,Se) R, kOhm / Ё 0, Illumination, lux Light OFF Light ON 100,0 10,0 1,0 0,1 1000,0 100,0 Radome coated by a photosensitive film Source of light Screen of low-observable shape Design A Design B Needed Available Performance of the photosensitive films Kissel at al. ICMAT 2007,1-6 July SUNTEC,Singapore

22/32 Особенности фотопроводимости нанопористых гранулярных композитов на основе соединений CdSe – CdS. И.А. Рыжиков и др. Радиотехника и электроника, 2008

23/32 Экстраординарное прохождение света через случайно расположенный массив субволновых отверстийb

24/32 Экспериментальные данные о прохождении света через пленки серебра осажденные на поверхность молекулярного фильтра(кривая 2) и на поверхность сплошной полимерной пленки (кривая 1).

25/32 CFC features: Sensors in stand by mode 0.1 mW Sensors in operation mW Cell phone 1 W Pocket PC 12 W XXI soldier 30 W, 2 kW·h Dimensions ~ cm 3 Consumtion Pt < 0.1 mg/см 2 Компактные топливные элементы mm Pt < 0.1 mg/cm 2 Gas-transport electrode 1-3 mm Membrane 1-2 cm Gas-transport electrode ИТПЭ РАН

26/32 Морфология катализатора на поверхности мембраны Метод исследования: атомно-силовая микроскопия Поверхность нафиона до нанесения платины Поверхность нафиона с нанесенной магнетроном платиной Поверхность нафиона с нанесенной магнетроном платиной, подвергнутого ионно-плазменной обработке

27/32 Установка для нанесения пара-поли-ксилилена методом полимеризации в вакууме

28/32 1. Защитное покрытие полипараксилилена толщиной 15 мкм. 2. Адгезионный подслой 3. Функциональный слой 4. Полимерная подложка Защита многослойных функциональных покрытий Структура покрытия Элемент полимерной оптики Селективное покрытие (элемент солнечного коллектора)

29/32 Образцы структурированного покрытия оксида сплава АМГ-3 были получены микродуговым оксидированием (МДО). Такие покрытия применяются в качестве коррозионностойких электродов Остаточная сквозная пористость полученного слоя является дефектом и негативно отражается на функциональных характеристиках МДО слоя. Поры в структурированном слое заполнялась полипараксилиленом. До и после обработки образцов полипараксилиленом измерялось пробивное напряжение и сквозная пористость полученных МДО структурированных слоев. Модификация МДО покрытий полипараксилиленом

30/32 Установка синтеза металлополимерных композитов Напыление защитных полимерных покрытий Синтез металлополи- мерных композитов In situ измерение электрофизических характеристик покрытий

31/32 Образцы металлополимерного композита 0 об.% 1.5об.% 2 об.% 4 об.% 5.3 об.% 6 об.% 8 об.% Увеличение концентрации серебра в композите приводит к изменению цвета, что связано с эффектом плазмонного резонанса на частицах серебра. Увеличение концентрации серебра приводит к уменьшению плотности наночастицы (кластера), что сопровождается уменьшением эффективной диэлектрической проницаемости кластера и приводит к сдвигу резонансной частоты. Appl Phys A (2010) Epsilon-near-zero material as a unique solution to three different approaches to cloaking. E. O. Lisnev, A. V. Dorofeenko, A. P. Vinogradov.

32/32 Большая безэховая камера ИТПЭ РАН 32

33/32 33 Экспериментальные образцы метаматериалов

34/32 34 Производственные мощности ИТПЭ РАН

35/32 35 Промышленное производство РПП

36/32 36 Испытательное оборудование

37/32 Выводы Использование технологий применяемых в микроэлектронике в сочетании с обратной связью основанной на контроле размерности получаемых структур на нанометровом уровне дает возможность получения материалов с уникальными свойствами и с заданной функциональностью. Создание тонкопленочных структур с многоуровневой организацией и нанометровой размерностью активных слоев – реальный путь создания сверхлегких и сверхтонких РПП. Наноструктурирование поверхности позволяет существенно повысить управляемость технологии создания оптически прозрачных теплозащитных и радиоотражающих покрытий. Металлополимерные нанокомпозиты могут использоваться в качестве сред с заданными оптическими и электрофизическими свойствами Модификация границ раздела гранулярных нанопористых полупроводников дает возможность получения материалов с уникальными значениями фоточувствительности и создания экранов с управляемыми спектральными характеристиками.