Подготовила Голубева С.В. г. Лесосибирск 2 часть.

Презентация:



Advertisements
Похожие презентации
Белки ПолисахаридыЛипиды АминокислотыМоносахариды Жирные кислоты и др. ПВК Ацетил - КоА Цикл Кребса Большие Молекулы Молекулы, играющие роль строительных.
Advertisements

Пименов А.В. Задачи: Дать характеристику аэробному этапу окисления – окислению ПВК в митохондриях Задачи: Дать характеристику аэробному этапу окисления.
Тема: Энергетический обмен. Анаэробный гликолиз Задачи: Дать характеристику различным формам биологического окисления, разобрать анаэробный путь окисления.
9 класс Обмен веществ (метаболизм) = ассимиляции + диссимиляции Органические вещества пищи являются основным источником не только материи, но и энергии.
Основы цитологии. Энергетический обмен в клетке. Основы цитологии. Энергетический обмен в клетке.
Энергетический обмен в клетке Актуализация знаний Изучение нового материала Закрепление План 1. Способы получения энергии живыми существами 2. Этапы.
Энергетический обмен. Синтез АТФ. План лекции: 1.Понятие об энергетическом обмене. 2.АТФ, его строение и значение. 3.Этапы энергетического обмена: a)подготовительный.
Энергетический обмен - катаболизм. Этапы внутриклеточного энергетического обмена Подготовительный Бескислородный (анаэробный) Кислородный ( аэробный)
Энергетический обмен (катаболизм, диссимиляция). Этапы энергетического обмена: 1.Подготовительный этап Расщепление высокомолекулярных органических веществ.
Энергетический обмен. Аэробы Анаэробы + О 2 Большинство животных; Человек; Грибы; Растения; Некоторые бактерии - О 2 Некоторые животные Бактерии.
Энергетический обмен в клетке Евдокимова Юлия Зоценко Татьяна Комкова Анна.
Обмен веществ и его роль в клетке. Энергетический обмен. Синтез АТФ.
Тема: «Энергетический обмен в клетке» Шафиев Наджибулло 10 класс.
гетеротрофноеавтотрофное Типы питания организмов :
Тема: Энергетический обмен в клетке. Биология 9 класс Гусева Н.А.
Обмен веществ. Обмен веществ (метаболизм) Пластический обмен (анаболизм, ассимиляция) Совокупность реакций синтеза, которые идут с затратой энергии АТФ.
Способы получения энергии живыми существами ЭНЕРГИЯ ФОТОСИНТЕЗ (1 ЭТАП) ХЕМОСИНТЕЗ (1 ЭТАП) ОКИСЛЕНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ БРОЖЕНИЕДЫХАНИЕ БЕСКИСЛОРОДНОЕ.
Метаболизм Пластический обмен Ассимиляция Анаболизм Энергетический обмен Диссимиляция Катаболизм.
Задание. Заполните пропуски в тексте: Органические вещества образуются в растительных клетках из и в процессе . Животные получают эти вещества в . В клетках.
Энергетически й обмен - катаболизм. Сформировать правильное представление о двух этапах внутриклеточного энергетического обмена: бескислородном и кислородном.
Транксрипт:

Подготовила Голубева С.В. г. Лесосибирск 2 часть

Клетки растений и фотосинтезирующих бактерий используют энергию солнца для образования АТФ. Бактерии-хемосинтетики получают энергию вследствие окисления неорганических веществ. Животные и грибы получают энергию в результате окисления органических соединений. Автотрофы также способны получать энергию благодаря окислению органических веществ. Однако у гетеротрофов эти соединения поступают извне готовыми, а у автотрофов они синтезируются в клетках из неорганических соединений.

Почему при окислении органических соединений освобождается энергия? Электроны в составе молекул органических веществ обладают большим запасом энергии, поскольку находятся на высоких энергетических уровнях этих молекул. Перемещаясь с высшего на более низкий энергетический уровень электроны освобождают энергию. Конечным акцептором электронов часто служит кислород. В этом и состоит его главная биологическая роль, именно для этой цели аэробам необходим кислород воздуха. Процессы биологического окисления: - протекают ступенчато; - при участии ферментов и переносчиков электронов; - 55% энергии превращается в энергию высокоэнергетических связей АТФ; - 45% энергии превращается в тепло. Глюкоза – один из основных источников энергии для клеток.

ПОДГОТОВИТЕЛЬНЫЙ ЭТАП БЕЛКИ УГЛЕВОДЫ ЖИРЫ пищеварительный канал АМИНОКИСЛОТЫ ГЛЮКОЗА C 6 H 12 O 6 ГЛИЦЕРИН ЖИРНЫЕ КИСЛОТЫ ЦИТОПЛАЗМА КЛЕТКИ ПИРОВИНОГРАДНАЯ КИСЛОТА 2C 3 H 6 O 3 ГЛИКОЛИЗ ГЛИКОЛИЗ (БЕСКИСЛОРОДНЫЙ ЭТАП) 2АТФ + 2НАД۰Н 2 2Н 2 О + ТЕПЛО КЛЕТОЧНОЕ ДЫХАНИЕ КЛЕТОЧНОЕ ДЫХАНИЕ (КИСЛОРОДНЫЙ ЭТАП) 42Н 2 О + 6СО 2 + ТЕПЛО МИТОХОНДРИИ 36АТФ + 2НАД۰Н 2 ИТОГО: 38АТФ + 4НАД۰Н 2 Заполни таблицу

Это путь получения энергии наиболее древний, поскольку на ранних этапах развития жизни на Земле кислород в атмосфере отсутствовал. Это путь получения энергии наиболее древний, поскольку на ранних этапах развития жизни на Земле кислород в атмосфере отсутствовал. ГЛИКОЛИЗ – процесс ферментативного анаэробного расщепления глюкозы и других органических соединений. Этот процесс так же называется брожением. Термин «брожение» обычно применяют по отношению к процессам, протекающим в клетках микроорганизмов или растений.брожением. Гликолиз идет в цитоплазме клеток и не связан с какими-либо мембранными системами. С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + 2С 3 Н 4 О 3 + 2НАД ۰ Н 2 + 2АТФ + 2Н 2 О + ТЕПЛО Большая часть энергии (60%) в реакции гликолиза рассеивается в виде тепла, и только 40% идет на синтез АТФ. Анаэробное дыхание Заполни таблицу

У прокариот клеточное дыхание происходит на впячиваниях плазматической мембраны, а у эукариот – на мембранах специальных клеточных органоидов – митохондрий. У прокариот клеточное дыхание происходит на впячиваниях плазматической мембраны, а у эукариот – на мембранах специальных клеточных органоидов – митохондрий. Наружная мембрана Внутренняя мембрана кристы Клеточное дыхание матрикс Митохондрии иногда называют «клеточными электростанциями». В клетке их количество сильно зависит от активности клетки. Каждая митохондрия окружена двумя мембранами. Внутренняя мембрана сложена в складки, называемые кристами. Важнейшей функцией митохондрий является синтез АТФ, происходящий за счёт окисления органических веществ.

СХЕМА БИОЛОГИЧЕСКОГО ОКИСЛЕНИЯ ПИРОВИНОГРАДНОЙ КИСЛОТЫ В МИТОХОНДРИЯХ. ПВК(2С 3 Н 4 О 3 ) 2СО 2 АКТИВИЗИРОВАННАЯЯ УКСУСНАЯ КИСЛОТА Ацетил-КоА (2СН 3 СО - ) Цикл Кребса 4СО 2 4Н 16Н QЕ 10НАД + 10НАД ۰ 2Н ГЛИКОЛИЗ 2НАД ۰ 2Н ДЫХАТЕЛЬНАЯ ЦЕПЬ ФЕРМЕНТОВ Е ~ 24Н 12Н 2 О 2АТФ 36АТФ 6О 2 34АТФ + подробнее

Третий этап – биологическое окисление, или дыхание Этот этап протекает только в присутствии кислорода и иначе называется кислородным. 1.Пировиноградная кислота (ПВК) из цитоплазмы поступает вПировиноградная кислота (ПВК) из цитоплазмы поступает в митохондрии, где теряет молекулу углекислого газа и превращается в активированную уксусную кислоту (ацетил-коэнзим А, ацетил-КоА), и НАДН 2. 2.В матриксе митохондрий уксусная кислота вступает в сложный циклВ матриксе митохондрий уксусная кислота вступает в сложный цикл биохимических превращений, который получил название Цикл Кребса. В результате ряда последовательных реакций происходит отщепление углекислого газа и окисление – снятие водорода с образующихся веществ. Углекислый газ, выделяется из митохондрий, а далее из клетки и организма в процессе дыхания. Весь водород, который снимается с промежуточных веществ, соединяется с переносчиком НАД +, и образуется НАД2Н. Общее уравнение декарбоксилирования и окисления ПВК: 2С 3 Н 4 О 3 + 6Н 2 О + 10НАД + 6СО НАД2Н Проследим теперь путь молекул НАД2Н. Заполни таблицу

НАД + ~ ~ ~ АТФ 1/2О 2 О 2- Н2ОН2О 2Н+2Н+ Внутренняя мембрана митохондрий Е Е Е 2Н 2е - НАД ۰ 2Н Молекулы НАД2Н поступают на кристы митохондрий, где расположена дыхательная цепь ферментов. На этой цепи происходит отщепление водорода от переносчика с одновременным снятием электронов. Каждая молекула восстановленного НАД2Н отдает два водорода и два электрона. Они поступают на дыхательную цепь ферментов, которая состоит из белков – цитохромов. Перемещаясь по этой системе каскадно, электрон теряет энергию. За счет этой энергии в присутствии фермента АТФ-азы синтезируются молекулы АТФ. Одновременно с этими процессами происходит перекачивание ионов водорода через мембрану на наружную её сторону. В процессе окисления 12 молекул НАД2Н, которые образовались при гликолизе (2молекулы) и в результате реакций в цикле Кребса (10 молекул), синтезируются 36 молекул АТФ. Конечным акцептором электронов является молекула кислорода, поступающая в митохондрии при дыхании. Атомы кислорода на наружной стороне мембраны принимают электроны и заряжаются отрицательно. Положительные ионы водорода соединяются с отрицательно заряженным кислородом, и образуются молекулы воды. 2 С 3 Н 4 О 3 + 4Н + 6О 2 6СО 2 + 6Н 2 О 36АДФ 36АТФ

Пировиноградная кислота (ПВК) СН 3 СОСООН Спиртовое брожение Молочно-кислое брожение БРОЖЕНИЕ – один из способов использования живыми организмами углеводов. В зависимости от конечного продукта реакции различают несколько видов брожения. БРОЖЕНИЕ – один из способов использования живыми организмами углеводов. В зависимости от конечного продукта реакции различают несколько видов брожения. Пропионово-кислое брожение Муравьино-кислое брожение Масляно-кислое брожение Недостатком процессов брожения является извлечением незначительной доли той энергии, которая заключена в связях органических молекул. Для многих одноклеточных и многоклеточных (особенно ведущих паразитический образ жизни)этого вполне достаточно.

Спиртовое брожение Дрожжи мельчайшие одноклеточные грибы. Их размеры сравнимы с размерами бактерий. С 6 Н 12 О 6 2СО 2 + 2С 2 Н 5 ОН (ЭТИЛОВЫЙ СПИРТ) Среди прокариот этот тип брожения распространен не очень широко, наиболее часто он встречается в группе дрожжей. Важно подчеркнуть, что дрожжи – эукариотические организмы и аэробы, но в анаэробных условиях брожение идет наиболее эффективно. Если добавить кислород, то брожение ослабнет. Этот эффект был обнаружен Л. Пастером при исследовании способов изготовления вина и пива. Он же изобрел способ остановки превращения спирта в уксус уксуснокислыми бактериями – пастеризацию (нагревание вина или пива до о С). При этом бактерии гибнут, и уксус не образуется. Спиртовое брожение происходит у хвойных растений зимой, когда устьица хвои закупориваются смолой, и газообмен с внешней средой прекращается.

Молочнокислое брожение С 6 Н 12 О 6 2С 3 Н 6 О 3 (молочная кислота) Молочнокислые бактерии (лактобактерии) относятся к группе стрептококков. Это анаэробные организмы, которые могут жить и в присутствии кислорода тоже. Лактобактерии живут в молоке и продуктах его переработки, на растениях и растительных остатках, в кишечнике и на слизистых оболочках человека и животных; практически не встречаются в почве и воде. Более 90% продуктов брожения этих бактерий составляет молочная кислота. Молочнокислые бактерии используются человеком в его хозяйственной деятельности. Запасание корма для скота (изготовление силоса), квашение капусты, изготовление различных кисломолочных продуктов: сметаны, йогурта, кефира, простокваши, творога, кумыса и тд. Молочнокислые бактерии предотвращают развитие гнилостных процессов в кишечнике, и поэтому употребление молочнокислых продуктов очень полезно для здоровья. У человека накопление молочной кислоты путем брожения в мышечных клетках происходит при интенсивной физической нагрузке. Кроме того, хрусталик и роговица глаза человека слабо снабжается кровью, поэтому и окислительный метаболизм выражен незначительно, а энергия в основном образуется при сбраживании глюкозы до молочной кислоты.

Пропионовокислое брожение Пропионовокислое брожение Пропионовая кислота, как конечный продукт данного брожения, образуется из молочной. Большинство этих бактерий – жесткие анаэробы, которые не выдерживают присутствия кислорода. У человека пропионовокислые бактерии вызывают воспаление волосяных фолликулов, что приводит к образованию угрей. Муравьинокислое брожение Муравьинокислое брожение У представителей группы энтеробактерий конечным продуктом брожения муравьиная кислота СН 2 О 2,, которая часто распадается на водород и углекислый газ. Поэтому эти бактерии часто называют газообразующими. Они исключительно нетребовательны к источникам питания. Наиболее типичным представителем этих бактерий служит кишечная палочка – обычный обитатель кишечника и животных. К этой группе микроорганизмов также принадлежат бактерии, вызывающие очень опасные заболевания человека: возбудитель тифа, холерный вибрион, чумная палочка.

Этапы энергетического обмена Где протекает Характерные изменения веществ Энергетические особенности I - подготовительный II- бескислородный III- кислородный