Генетика Почему мы похожи на своих родителей?. Что такое генетика? Генетика - относительно молодая наука. Официальной датой ее рождения считается 1900г.,

Презентация:



Advertisements
Похожие презентации
Генетика. Законы Г. Менделя Почему мы похожи на своих родителей? автор: Широченко Н. Н. Учитель биологии ГОУ ЦО 1456 Москва 2010.
Advertisements

Основные закономерности наследственности и изменчивости Законы Г. Менделя Теория постигается через практику.
Преподаватель: Погребнёв Сергей Сергеевич Тема 7: Наследственность и изменчивость организмов. Лекция 22. ЗАКОНОМЕРНОСТИ НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ.
Грегор Иоганн Мендель родился 22 июня 1822 года в семье крестьянина в небольшой деревушке Хинчинцы на территории современной Чехии, а тогда - Австрийской.
I ЗАКОН МЕНДЕЛЯ То, что мы знаем - ограничено, то чего мы не знаем - бесконечно. (П. Лаплас)
Сцепленное наследование генов. I закон Менделя (закон единообразия гибридов первого поколения или правило доминирования ) – при моногибридном скрещивании.
На уроке мы должны: Познакомиться с гибридологическим методом как основным методом генетики Изучить закономерности наследования признаков, установленные.
Наследование признаков у организмов.. Наследственность – это способность сохранять и передавать свои признаки из поколения в поколение. Передача наследственной.
План. 1)Введение 2)Законы Грегора Менделя 3)Условия выполенения законов Менделя 4)Закон Т. Моргана 5)Аллели. Аллельные и неаллельные гены. 6)Группы крови.
ОСНОВЫ ГЕНЕТИКИ. СОДЕРЖАНИЕ Ученые Термины Генетические символы Первый закон Менделя Второй закон Менделя Третий закон Менделя Неполное доминирование.
дигибридным дигетерозиготными три- и полигетерозиготными Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков.
I закон I закон (правило единообразия гибридов первого поколения F1): у гибридов первого поколения F1 проявляется один из пары признаков преобладающий.
Презентация на тему: 1 и 2 закон Менделя Порхун Александры Группа 306 Сд 2013 год.
На уроке мы должны: Познакомиться с гибридологическим методом как основным методом генетики Изучить закономерности наследования признаков, установленные.
Тема: «1 и 2 законы Менделя» Задачи: 1.Изучение законов Менделя и их цитологических основ. 2.Знакомство с основными понятиями генетики.
Изучение разделов «Селекция и генетика» в 9 классе.
Урок. Генетика пола. Сцепленное с полом наследование.
Тема : « Генетика. Законы Менделя » 10 класс. Генетика относительно молодая наука. Официальной датой ее рождения считается 1900 г., когда Г. де Фриз в.
Генетика… Раздел генетики, изучающий закономерности наследования и изменчивости признаков у человека.
Основы Генетики. Кто такой Грегор Мендель? Грегор Мендель ( )-выдающийся чешский ученый. Основоположник генетики. Впервые обнаружил существование.
Транксрипт:

Генетика Почему мы похожи на своих родителей?

Что такое генетика? Генетика - относительно молодая наука. Официальной датой ее рождения считается 1900г., когда Г. де Фриз в Голландии, К.Корренс в Германии и Э.Чермак в Австрии независимо друг от друга "переоткрыли" законы наследования признаков, установленные Г. Менделем еще в 1865 году. Генетика изучает два фундаментальных свойства живых организмов: наследственность и изменчивость

Грегор Иоганн Мендель родился 22 июня 1822 года в семье крестьянина в небольшой деревушке Хинчинцы на территории современной Чехии, а тогда - Австрийской империи. В 1843 году Мендель поступил послушником в Августинский монастырь в Брюнне (ныне Брно). В 1851 году настоятель отправил его изучать естественные науки в Венский университет. 6 января 1884 года отца Грегора (Иоганна Менделя) не стало. Он похоронен в родном Брюнне. Слава как ученого пришла к Менделю уже после смерти.

Опыты Менделя Опыты Менделя были тщательно продуманы. Свои исследования он начал с изучения закономерностей наследования всего лишь одной пары альтернативных признаков. Моногибридным называют скрещивание, при котором анализируется наследование одной пары альтернативных признаков. Классическим примером моногибридного скрещивания является скрещивание сортов гороха с желтыми и зелеными семенами. При скрещивании растения с желтыми и зелеными семенами, все потомки имели желтые семена.

Мендель провел скрещивание: Сорт гороха с желтыми семенами Сорт гороха с зелеными семенами P: F1:F1: В первом поколении были только растения с желтыми семенами!

Правило единообразия «В моногибридном скрещивании первое поколение потомков является единообразным». Проявляющийся в первом поколении вариант признака называется доминантным, а тот, который «пропадает» - рецессивным. Признак: окраска семян Доминантное проявление: желтые семена Рецессивное проявление: зеленые семена

При скрещивании гибридов первого поколения друг с другом, Мендель обнаружил, что в потомстве появляется расщепление: F1:F1: F2:F2: 3/43/4 1/41/4 Три четверти семян имели доминантное проявление признака, а четверть семян – рецессивное

Мендель предложил следующую гипотезу для объяснения этих результатов: Он предположил, что каждое проявление признака определяется наследственными факторами. Половые клетки содержат только один наследственный фактор, то есть они "чисты" (не содержат второго наследственного фактора). Гипотеза «чистоты гамет»: Наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде.

Первый закон Менделя (закон расщепления) Признаки данного организма детерминируются парами внутренних наследственных факторов. В одной гамете может быть представлен лишь один из каждой пары таких факторов.

Объяснение: Генотип: набор наследственных факторов данного организма Фенотип: набор проявлений различных признаков организма Аллели: варианты проявления признака (бывают доминантные и рецессивные) Гомозигота: организм с одинаковыми аллелями по данному признаку Гетерозигота: организм с разными аллелями по данному признаку. В гетерозиготе фенотипически проявляется доминантный аллель

Дигибридное скрещивание Расщепление 9:3:3:1 Признаки наследуются независимо друг от друга.

Второй закон Менделя (закон независимого распределения) Каждое проявление одного признака может сочетаться с любым проявлением другого признака

Менделю повезло! Что было бы, если бы Грегор Мендель выбрал бы не настолько удачный объект? Что могло ему помешать? В какой ситуации он не смог бы открыть свои законы?

Трудности, которых Мендель избежал, пришлись на долю другого исследователя...

Томас Гент Морган родился 25 сентября 1866 года в Лексингтоне, штат Кентукки. С 1911 года Морган и его соратники начали публиковать серию работ, в которых экспериментально, на основе многочисленных опытов с дрозофилами, доказывалось, что гены - это материальные частицы, определяющие наследственную изменчивость, и что их носителями служат хромосомы клеточного ядра. Тогда и была сформулирована в основных чертах хромосомная теория наследственности, подтвердившая и подкрепившая законы, открытые Менделем. Умер Морган 4 декабря 1945 года.

С легкой руки Моргана дрозофилами начали заниматься очень многие генетические лаборатории мира.

Мейоз и оплодотворениеГипотезы Менделя Диплоидные клетки содержат пары гомологичных хромосом Признаки контролируются парами факторов Гомологичные хромосомы расходятся во время мейоза Парные факторы разделяются при образовании гамет В каждую гамету попадает одна из гомологичных хромосом Каждая гамета получает один из пары факторов Только ядро мужской гаметы сливается с ядром яйцеклетки Факторы передаются из поколения в поколение как дискретные единицы При оплодотворении пары гомологичных хромосом восстанавливаются; каждая гамета (мужская или женская) вносит одну из гомологичных хромосом Каждый организм наследует по одному фактору от каждой из родительских особей Морган и его коллеги обратили внимание на то, что есть соответствия между событиями, происходящими при мейозе и оплодотворении, и гипотезами Менделя

Так начала формулироваться хромосомная теория наследственности Согласно этой теории, каждая пара факторов локализована в паре гомологичных хромосом, причем каждая хромосома несет по одному фактору. Поскольку число признаков у любого организма во много раз больше числа его хромосом, видимых в микроскоп (у человека, например, хромосом 46, то есть 23 гомологичные пары), каждая хромосома должна содержать множество таких факторов В 1909 г. Иогансен заменил термин фактор, означавший элементарную единицу наследственности, термином ген. Альтернативные формы гена, определяющие его проявление в фенотипе, назвали аллелями. Гены располагаются в хромосомах линейно (один за другим в строгом порядке), и при этом, каждому гену присуще определенное место – локус.

Но в этом случае, гены, находящиеся в одной хромосоме должны наследоваться только вместе и никак иначе! Они должны быть сцеплены Морган решил скрестить дигетерозиготных мух с серыми телами и длинными крыльями с чернотелыми мухами с зачаточными крыльями (дигомозигота). Морган предполагал наличие двух возможных вариантов: полное сцепление (расщепление 1:1) и полное отсутствие сцепления (расщепление 1:1:1:1)

Но все оказалось несколько сложнее...

Это рекомбинанты! Морган провел такое скрещивание несколько раз и ни разу не получил ни один из предсказанных результатов. Всякий раз он получал следующее: 41,5% - серое тело, длинные крылья (генотип GgLl) 41.5% - черное тело, зачаточные крылья (генотип ggll) 8,5% - серое тело, зачаточные крылья (генотип Ggll) 8,5% - черное тело, длинные крылья (генотип ggLl)

На основании этого Морган сделал следующие выводы: 1.Изучаемые гены находятся в хромосомах 2.Оба гена находятся в одной хромосоме, то есть, они сцеплены 3.Аллели каждого гена расположены в гомологичных хромосомах 4.Во время мейоза между гомологичными хромосомами происходил обмен генами Так был открыт кроссинговер..

Напомню основные постулаты хромосомной теории наследственности : 1.Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален; 2.Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены; 3.Гены расположены в хромосомах в линейной последовательности; Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов; 4.Сцепление генов может нарушаться в процессе кроссинговера; Частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше процент кроссинговера (прямая зависимость); 5.Каждый вид имеет характерный только для него набор хромосом - кариотип.

Что значит линейно? Хромосома эвкалипта......коровы

...крысы...

И человека:

Что значит локус в гомологичных хромосомах? Одна хромосома от мамы, а другая – от папы!

Что такое кариотип? У человека 23 пары гомологичных хромосом Последняя пара – это половые хромосомы

Как у людей определяется пол? Существует пара половых хромосом – X и Y

Если в зиготу попадают две X-хромосомы, то получается девочка XX Мальчик получится, если от мамы придет X-хромосома, а от папы – Y-хромосома XY

Изменчивость организмов

Изменчивость – это свойство живых систем существовать в различных формах и приобретать новые признаки Изменчивость делится на наследственную и ненаследственную (модификационную) Наследственная изменчивость – это изменения генетического материала организма или клетки Модификационная изменчивость – это способность организмов изменять фенотип в зависимости от условий окружающей среды

Наследственная изменчивость делится на комбинативную и мутационную изменчивость Существует три источника комбинативной изменчивости: 1.Независимое расхождение гомологичных хромосом в процессе мейоза 2.Случайная комбинация гамет при оплодотворении 3.Процесс кроссинговера (гомологичная рекомбинация)

Хромосомы могут разойтись... так.....или так

Число возможных вариантов гамет – 2 n, где n – это гаплоидное число хромосом У одного человека число возможных гамет – И это без учета кроссинговера!

Случайная встреча гамет при оплодотворении В моногибридном скрещивании, как вы помните было возможно четыре варианта: АА, Аа, аА и аа. В дигибридном – 16 (4 2 ), в тригибридном – 4 3, и так далее. Генов у человека около

Мутационная изменчивость. Изменения генетического материала Три уровня: Геномный Хромосомный Уровень последовательности ДНК

Геномные мутации – изменение числа хромосом Пример – наследственное заболевание синдром Дауна. Возникает из-за того, что в 21 хромосомной паре не две гомологичные хромосомы, а три (трисомия).

Хромосомные мутации – изменение морфологии отдельных хромосом Делеции – удаление участков Дупликации – удвоение участков Транслокации – перемещение участков Инверсии – переворот участков

Мутации на уровне последовательности нуклеотидов ДНК. Генные мутации Замена оснований Выпадение оснований Вставка оснований ACCTGCGTGCCAAATGTGTGC Thr-Cys-Val-Pro-Tyr-Val-Cys ACCTGAGTGCCAAATGTGTGC Thr-STOP-Val-Pro-Tyr-Val-Cys ACCTGCGTGCCAAATGTGTGC Thr-Cys-Val-Pro-Tyr-Val-Cys ACCTGCGT GTGTGC Thr-Cys-Val-Cys-Val ACCTGCGTGCCAAATGTGTGC Thr-Cys-Val-Pro-Tyr-Val-Cys ACCTGCGTGCCAGTACAATGTGTGC Thr-Cys-Val-Pro-Phe-Gln-Cys-Val

Мутации возникают под действием всевозможных факторов разной природы: Физические: радиация и ультрафиолетовое излучение Химические: вещества-мутагены Биологические: вирусы и мобильные элементы генома

Модификационная изменчивость В зависимости от условий окружающей среды: количества корма, благоприятности климата, времени года, экологической обстановки, организмы могут развиваться по-разному. Каждый признак имеет свою норму реакции – область, в которой данный признак может проявляться. Например норма реакции человеческого роста – это интервал примерно от 130 см до 240 см. При этом в человеческих популяциях очень редко встречаются индивиды с «крайними» проявлениями этого признака. Зато много людей «среднего» роста: 160 – 180 см.

Современная генетика

Генетика приобрела свой современный облик, когда стало ясно, что же является материальным носителем наследственной информации и какова природа генов. Ген - это участок молекулы нуклеиновой кислоты, ответственный за синтез одного полипептида. Нуклеиновые кислоты – это гигантские полимеры, состоящие из нуклеотидов и входящие в состав хромосом. Совокупность всех хромосом данного вида называется кариотипом. Совокупность всех генов данного вида называется геномом.

Экспрессия генов – реализация наследственной информации Ген (участок молекулы ДНК) и-РНК (копия гена) Полипептидная цепочка Белок Признак транскрипциятрансляция процессинг (фолдинг) участие в биохимических превращениях ОРГАНИЗМ

Возможности современной экспериментальной биологии Что могут ученые? Выделять ДНК, РНК и белки из различных организмов. Изучать их структуру и свойства Определять последовательности нуклеотидов нуклеиновых кислот (секвенирование) Изменять последовательности ДНК и РНК in vitro Вставлять нужные последовательности в разные организмы (трансформация) Тестировать организмы на наличие той или иной последовательности (гена) Сравнивать последовательности нуклеотидов в геномах разных видов и оценивать степень родства между ними И еще много всего интересного...