Что такое спин? Историческая справка Спин и магнитный момент электрона Спины и магнитные моменты ядер Последствия (важные и менее важные) Спиновые взаимодействия.

Презентация:



Advertisements
Похожие презентации
7/23/ :59:31 AMRefresher course in Chemistry; Sept.20-Oct.12, Magnetic Resonance Phenomenon is a manifestation due to the presence of INTRINSIC.
Advertisements

Love And Marriage. You choose what life you would like to have You are a creator of your life. It can be a wonderful happy marriage or… Or you can get.
7/23/2015 1:07:26 AMPulsed NMR by Dr.S.Aravamudhan 1 P -X π/2 At t =0, the end of pulse External Magnetic Field Chemical substance Spin ensemble Z X Y.
Schrodingers Equation for Three Dimensions. QM in Three Dimensions The one dimensional case was good for illustrating basic features such as quantization.
1 APPLIED PHYSICS CODE : 07A1BS05 CODE : 07A1BS05 I B.TECH I B.TECH CSE, IT, ECE & EEE CSE, IT, ECE & EEE UNIT-4 UNIT-4 CHAPTER :1 CHAPTER :1 NO. OF SLIDES.
ADVANCED DRESS-UP FEATURES 39. Once OK has been selected, your part will appear with the filleted area highlighted by orange lines at the boundaries.
What to expect? How to prepare? What to do? How to win and find a good job? BUSINESS ENGLISH COURSE NOVA KAKHOVKA GUMNASUIM 2012.
Ideal Family Were prepared by Iryna Molokova and Ilona Synytsia.
Presentation about hobby that would be my favourite Surfing made by Ezjaev A.V. made by Ezjaev A.V.
Vortex lattice in presence of weak periodic pinning potential W. V. Pogosov and V. V. Moshchalkov Laboratorium voor Vaste-Stoffysica en Magnetisme, K.
Electromagnetism. Electromagnetism is the branch of science concerned with the forces that occur between electrically charged particles. In electromagnetic.
Coriolis effect. In physics, the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame. In a reference.
SIR model The SIR model Standard convention labels these three compartments S (for susceptible), I (for infectious) and R (for recovered). Therefore, this.
Recent advances in intercalation compounds physics.
VORTEX MATTER IN ATOMIC BOSE-EINSTEIN CONDENSATES W. V. Pogosov, Institut des NanoSciences de Paris, Universite Paris VI – Pierre et Marie Curie, Paris;
I and society. Plan Aim I in society Friends Classmates Student-teacher Parents and children Brothers and sisters Society in human life Conclusion Source.
How can we measure distances in open space. Distances in open space.
1. Do you like your school? I should say that I love my school a lot. For me its not only a building where I get knowledge, but also the second home of.
7/23/2015 1:08:36 AMInno Course Contents1 For the Quantization Effects on the Spin Angular Momentum in presence of External magnetic Field VIEW the powerpoint.
DRAFTING and DIMENSIONING 98. A properly dimensioned drawing of a part is very important to the manufacturing outcome. With CATIA, it can be a very simple.
Транксрипт:

Что такое спин? Историческая справка Спин и магнитный момент электрона Спины и магнитные моменты ядер Последствия (важные и менее важные) Спиновые взаимодействия Введение в спиновую физику М. И. Дьяконов Université Montpellier II, France Лекция 1

Спин - это внутренний момент (количества движения = импульса) частицы Спин электрона открыли Гаудсмит и Уленбек в 1925 г Историческая справка Samuel Goudsmit (right) George Uhlenbeck (left) 1928

В то время Паули и многие другие (Лоренц, Крониг...) считали, что идея спина - это ерудна. Из воспоминаний Гаудсмита (1971): "The one thing I remember is that Ehrenfest said to me: "Well, that is a nice idea, though it may be wrong. But you don't yet have a reputation, so you have nothing to lose". Историческая справка Из письма Томаса Гаудсмиту (1926): " I think that you and Uhlenbeck have been very lucky to have your spinning electron published and talked about before Pauli heard of it."

На самом деле существование спина было видно уже в экспериментах Штерна и Герлаха (1921), которые были неправильно интерпретированы Историческая справка

P. A. M. Dirac Paul Adrien Maurice Dirac Диалог Дирака и Гейзенберга на корабле по дороге в Японию Dirac: 'Why do you dance?' Heisenberg: 'When there are nice girls, it is a pleasure' Dirac: 'But, Heisenberg, how do you know beforehand that the girls are nice?' Уравнение Дирака (1928) Релятивистское уравнение для электрон а, из которого существование спина следует автоматически В магнитном поле циклотронный период равен периоду прецессии спина! Предсказывает также магнитный момент электрона:

Проекция спина на любую ось = ±1/2 (в единицах ћ). S z = ± 1/2, и так же для S x и S y. В то же время S 2 = 3/4! Не странно ли? T. e. S x 2, S y 2 и S z 2 всегда существуют одновременно (не может быть S x 2 = 0) Магнитный момент электрона E = ± μB Связанная с этим энергия в магнитном поле:

Если шар с зарядом e, радиуса r вращается со скоростью на экваторе v, то его магнитный момент порядка Получается, что если v ~ c, то чтобы получить правильное значение μ нужно взять r ~ ħ/mc ~ cm ("комптоновская " длина) Zitterbewegung? Zitterbewegung and the Magnetic Moment of the Electron Basil S. Davis, Arxiv:

Спины и магнитные моменты других частиц Протон, нейтрон, и кварки, из которых они состоят, мюон и нейтрино, имеют спин = ½ Магнитный момент протона и нейтрона порядка eћ/mc, где теперь m это масса протона. Их магнитные моменты в ~ 2000 раз меньше магнитного момента электрона Ядра с четным числом протонов +нейтронов как правило имеют спин =0 и не обладают магнитным моментом Ядра с нечетным числом протонов+нейтронов обладают полуцелым спином Примеры: He 4 I = 0, He 3 I = 1/2, In 113 I = 9/2 Спин фотона = 1

Роль спина в Природе Спин электрона полуцелый, S=1/2 Электроны - фермионы Принцип Паули ХимияЖивая материя, хомо сапиенс, общество Наше сегодняшнее заседание Структура атомов, молекул, вещества

Спиновые взаимодействия 1. Диполь-дипольное взаимодействие 2. Спин-орбитальное взаимодействие 3. Обменное взаимодействие 4. Сверхтонкое взаимодействие со спинами ядер 5. Взаимодействие с внешним магнитным полем

Spin interactions Direct magnetic interaction – the dipole-dipole interaction between the magnetic moments of a pair of electrons. Order of magnitude ~ μ 2 /r 3. Normally negligible for electrons, however important for nuclear spins Exchange interaction – Coulomb interaction between electrons, which becomes spin- dependent because their wavefunction must be anti-symmetric. Is at the origin of ferromagnetism. Important in magnetic semiconductors Spin-orbit interaction – If an observer moves with a velocity v in an external electric field E, he will see a magnetic field B = (v/c) × E. Thus there is an effective magnetic field acting on the magnetic moment (spin) of a moving electron. Stongly enhanced for atoms with large Z. This interaction is responsible for most of the spin-related optical and transport effects Hyperfine interaction with lattice nuclei – Magnetic interaction between the electron and nuclear magnetic moments. Important for bands originating from s-states in atoms with large Z. Leads to spectacular phenomena in the strongly coupled electron ̶ nuclei spin system

Проекция спина на любую ось = ±1/2 (в единицах ћ). S z = ± 1/2, и так же для S x и S y. В то же время S 2 = 3/4! Не странно ли? T. e. S x 2, S y 2 и S z 2 всегда существуют одновременно (не может быть S x 2 = 0)

Я б смотреть на эти спины и за деньги не хотел... Саша Черный (1908) Введение в спиновую физику М. И. Дьяконов Université Montpellier II, France Лекция 2

Спиновая физика: 1) Изучение равновесного состояния спинов 2) Возмущение равновесного состояния 3) Измерение отклика на это возмущение

Magnetic resonances Nuclear magnetic resonance (Rabi, 1938) Electron spin resonance (Zavoisky, 1944) Atomic physics Polarized luminescence (Wood, 1923) Depolarization by magnetic field (Wood, 1923; Hanle, 1924) Optical pumping (Kastler, Brossel, 1950) Историческая справка

R.W. Wood and A. Ellett Polarized resonance radiation in weak magnetic fields Phys. Rev. 24, 243 (1924) Robert Wood ( ) W. Hanle Über magnetische Beeinflussung der Polarisation der Resonanz-Fluoreszenz Z. Physik 30, 93 (1924) Wilhelm Hanle ( ) Историческая справка

Alfred Kastler ( ) Jean Brossel ( ) J. Brossel, A. Kastler, La détéction de la résonance magnétique des niveaux excités – leffet de depolarization des radiations de résonance optique et de fluorescence Compt. Rend. Hebd. Acad. Sci. 229, 1213 (1949) Историческая справка

Isidor Rabi ( ) Discovery of the Nuclear Magnetic Resonance Evgeny Zavoisky ( ) Discovery of the Electron Spin Resonance Историческая справка

Спиновый резонанс B S Магнитный момент прецессирует вокруг магнитного поля с частотой Ω = 2μB/ħ Уравнение: +μB μB

Спиновый резонанс Теперь включим переменное магнитное поле B 1 (t) перпендикулярное B и вращающееся с частотой ω = Ω (резонанс) Перейдем во вращающуюся с частотой ω систему координат. В этой системе останется только постоянное поле B 1. Магнитный момент прецессирует вокруг магнитного поля B 1 с частотой Ω 1 = 2μB 1 /ħ B S B1B1 Если вначале спин направлен вдоль B, то через время π / Ω 1 спин перевернется (180° импульс)

Уравнение Блоха S 0 - равновесное значение спина T 2 - поперечное время релаксации T 1 - продольное время релаксации Felix Bloch ( )

Spin echo

Human brain scanned by NMR Applications come unexpected!

First experiment on optical spin orientation of free electrons in a semiconductor Georges Lampel 2008

Optical spin orientation and detection Band structure of GaAs near Γ point Optical transitions between atomic levels with j = 3/2 and j =1/2 under absorption of a right circularly polarized photon The ratio of the two probabilities is 3:1 l = 0 l = 1

Optical spin orientation and detection Excitation by circularly polarized light Detection of the circular polarization of luminescence, P For recombination with non-polarized holes P = S, the average spin per electron 1+ / s P0P0 P = where is the electron lifetime, s is the spin relaxation time GaAs

The Hanle effect depolarization of luminescence in magnetic field It was then observed that the apparatus was oriented in a different direction from that which obtained in earlier work, and on turning the table on which everything was mounted through ninety degrees, bringing the observation direction East and West, we at once obtained a much higher value of the polarization R. Wood and A. Ellett (1924) P (B) = P (0) 1+ ( Ω Τ) 2 Ω is the spin precession frequency in magnetic field, 1/ Τ = 1/ + 1/ s is the effective spin lifetime (The Hanle curve)

Spin relaxation

Mistification of spin relaxation: The qubit (spin) gets entangled with the environment… The environment is constantly trying to look at the state of a qubit, a process called decoherence Spin relaxation is a result of the action of fluctuating in time magnetic fields In most cases, these are not real magnetic fields, but rather effective magnetic fields originating from the spin-orbit, exchange, or hyperfine interactions Two parameters of a randomly fluctuating magnetic field: a) Its amplitude, or the average spin precession frequency, ω, in this random field b) Its correlation time c, i.e. the time during which the field may be roughly considered as constant

Spin relaxation IMPORTANT PARAMETER What happens, depends on the value of the dimensionless parameter ω c which is the typical angle of spin precession during the correlation time

TWO LIMITING CASES: a) c > 1 This means that during the correlation time the spin will make many rotations around the direction of the magnetic field Spin relaxation

a) c

b) c >> 1 During time ~ 1 / the spin projection transverse to the random magnetic field is (on the average) completely destroyed, while its projection along the direction of the field is conserved After time c the magnetic field changes its direction, and the initial spin polarization will disappear. Thus for this case s ~ c, i.e. the spin relaxation time is on the order of the correlation time This consideration is quite general It applies to any mechanism of spin relaxation! Spin relaxation

Введение в спиновую физику М. И. Дьяконов Université Montpellier II, France Лекция 3 The electron-nuclear spin system Spin-related transport phenomena, spin Hall effect Жить на вершине голой, Писать простые сонеты, И брать у людей из дола Хлеб, вино, и котлеты. Саша Черный

Electron spin system Nuclear spin system Effective nuclear magnetic field Dynamic nuclear polarization The electron-nuclear spin system Electron spin orientation Electron spin detection NMR

The physics is governed by three basic interactions: a)Hyperfine interaction between electron and nuclear spins Fermi contact interaction: V = AIS (for an electron in s-state) I - nuclear spin, S - electron spin Consequences: (i) Nuclear spin relaxation (electron spin system in equilibrium) (ii) Dynamic nuclear polarization (electron spin system out of equilibrium) Time scale: from seconds to minutes, to hours (iii) Effective nuclear magnetic field acting on electron spins The field of 100% polarized nuclei in GaAs would be about 6 Tesla ! The electron-nuclear spin system

b) Dipole-dipole interaction between nuclear spins. Can be characterized by the local magnetic field, B L ~ several Gauss and a precession period of a nuclear spin in this field, N ~10 -4 s This interaction leads to nuclear spin diffusion (Bloembergen) Diffusion coefficient: D N ~ a 2 / N ~ cm 2 /s So, spin diffusion on a distance of 100 Å takes ~ 1s and several hours for a distance of 1 μ m The electron-nuclear spin system c) Zeeman interaction of electron and nuclear spins with the external magnetic field N / B ~ 10 -3

Nuclear spin temperature The time N ~10 4 s (also called T 2 ) gives a characteristic time scale for the nuclear spin system, which is much shorter than the spin-lattice relaxation time T 1 The average nuclear spin is given by the thermodynamical formula: I av = I+1 3 B kΘkΘ always along B ! The electron-nuclear spin system Calculation of the spin temperature (Dyakonov, Perel, 1974) gives : B N = B 0 B(BS) B 2 +B L 2 During time ~ τ N thermal equilibrium within this system is established, with a nuclear spin temperature Θ, which may be very different from the crystal temperature, for example, something like 10 6 K

The oblique Hanle effect (manifestation of nuclear magnetic field in the oblique Hanle effect) The nuclei always get polarized so that I ~ (SB)B Hence B must be neither parallel, nor perpendicular to S ! Dyakonov, Perel, Ekimov, Safarov (1974)

The electron-nuclear spin system (Nuclear spin Zoo) V.A. Novikov and V.G. Fleisher, Sov. Phys. JETP, 44, 410 (1976) Circular polarization of luminescence in AlGaAs in perpendicular magnetic field for different field orientation with respect to crystal axes

The electron-nuclear spin system (Nuclear spin Zoo) Self-sustained oscillations of the circular polarization of the luminescence in AlGaAs appearing after application of transverse magnetic field B=60 G for different angles with [110] V.A. Novikov and V.G. Fleisher, Sov. Phys. JETP, 47, 539 (1978)

The electron-nuclear spin system (Nuclear spin Zoo) Oblique Hanle effect in GaAs θ = 83 o θ = 87 o θ = 90 o B.P. Zakharchenya, V.G. Fleisher et al, Sov. Phys. Solid State 23, 810 (1981)

Spin-related transport phenomena, spin Hall effect

Anomalous Hall effect 1879 Hall Effect 1881 Anomalous Hall Effect in ferromagnets: Edwin Hall Joaquin Mazdak Luttinger Robert Karplus Explanation (spin-orbit interaction!): J. Smit (1951,1955) R. Karplus, J.M. Luttinger (1954)

Current-induced spin accumulation (Spin Hall Effect) Leningrad 1976

j Current-induced spin accumulation

Spin and charge currents x z q xz - z component of spin is flowing in the x direction Generally : q ij Here the spin current is accompanied by a charge current q x ( electric current j = – q/e ) x z Now there is a pure spin current q xz The charge current is zero: q=0

Coupling of spin and charge currents Charge flow density: q = - j/e ( j – electric current density ) Spin polarization flow density tensor : q ij (flow of the j-component of spin in direction i ) Spin polarization density: P = 2S, where S is the spin density vector. ) Without taking account of spin-orbit interaction: – normal expression with drift and diffusion – similar expression (spins carried by drift and diffusion) Here is a dimensionless coupling parameter proportional to the spin-orbit interaction ijk is the unit antisymmetric tensor Spin-orbit interaction couples the two currents: q i = q i (0) + ε ijk q ij (0) q ij = q ij (0) – ε ijk q k (0) M.I. Dyakonov, Phys. Rev. Lett. 99, (2007)

Phenomenological equations (Dyakonov, Perel, 1971) Anomalous Hall Effect Inverse Spin Hall Effect Spin Hall Effect Diffusive counterpart of SHE =, = D.

First observation of the Inverse Spin Hall Effect ( j ~ curl P ) Circularly polarized light creates spin polarization P, however curl P = 0 By applying a magnetic field parallel to the surface, one creates the y component of P. This makes a non-zero curl P and hence an electric current in the x direction Proposal: N.S. Averkiev and M.I. Dyakonov, Sov. Phys. Semicond. 17, 393 (1983) Experiment: A.A. Bakun, B.P. Zakharchenya, A.A. Rogachev, M.N. Tkachuk, and V.G. Fleisher, Sov. Phys. JETP Lett. 40, 1293 (1984)

First observations of the Spin Hall effect Y.K. Kato, R.C. Myers, A.C. Gossard, and D.D. Awschalom, Science 306, 1910 (2004) 33-Year Hunt for Proof of Spin Current Now Over Spin Hall Effect Observed !

Experiment Two-dimensional gas of holes in AlGaAs/GaAs heterostructure (optical registration) J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, PRL, 94, (2005) Polarization reversal when the current direction is changed Polarization at opposite edges of the sample First observations of the Spin Hall effect

Spintronics? Spintronics mantras: Spintronics is one of the most promising new technologies, where the spin degrees of freedom of electrons in semiconductors are manipulated and utilized for functions such as memory, operation, and communication The electron spin, which has been largely ignored in a charge-based electronics, has now become the focus of research due to the emerging field of spintronics (repeated with small variations in ~10 4 publications by ~ 10 3 authors).. spin-based electronics, where it is not the electron charge but the electron spin that carries information, and this offers opportunities for a new generation of devices combining standard microelectronics with spin-dependent effects... Spintronics: a spin-based electronics vision of the future, S.A. Wolf, D.D. Awschalom, et al, Science 294, 1488 (2001)

Datta-Das spin transistor the wonderful spintronic device SD G No advantages compared to the normal Field Effect Transistor! But many severe drawbacks … S. Datta and B. Das, Electronic analog of the electro-optic modulator Appl. Phys. Lett. 56, 665 (1990) citations channel Ferromagnetic contacts gate source drain

Robert Wood ( ) Wilhelm Hanle ( ) Alfred Kastler ( ) Jean Brossel ( ) The founding fathers Isidor Rabi ( ) Evgeny Zavoisky ( ) Nicolaas Bloembergen (1920) Felix Bloch ( )