1 Конечные и бесконечные множества Конечное множество- множество, состоящее из конечного числа элементов. Бесконечное множество – непустое множество, не.

Презентация:



Advertisements
Похожие презентации
Бинарные отношения Бинарным отношением между элементами множеств А и В называется любое подмножество R A B. Если множества A и B совпадают А=В, то R называют.
Advertisements

Метод Квайна-МакКласки. Выпишем наборы, на которых функция принимает единичное значение.
1 Понятие множества Понятие множества является одним из наиболее общих и наиболее важных математических понятий. Множества обозначают прописными латинскими.
1 Свойства отношений R 1 содержится в R 2 (R 1 R 2 ), если любая пара (x, y), которая принадлежит отношению R 1 также принадлежит и отношению R 2 Рефлексивность.
Бинарные отношения. Транзитивное замыкание Для произвольного отношения A можно найти минимальное транзитивное отношение a такое, что ab. Минимальность.
Негатранзитивность отношений Транзитивное замыкание Транзитивным замыканием отношения R называется бинарное отношение такое, что x R y тогда и только тогда,
2. Соответствия Соответствие между множествами А и В определяется заданным правилом, согласно которому элементам одного множества сопоставляются элементы.
БИНАРНЫЕ ОТНОШЕНИЯ Преподаватель О.В. Козлова ГАПОУ КК«НКСЭ»
1 Кубенский А.А. Дискретная математика Глава 1. Множества и отношения Отношения Декартово произведение множеств: A B = { (a, b) | a A, b B } B A.
ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Составила: М.П. Филиппова доцент кафедры высшей математики ИМИ СВФУ.
Элементы теории множеств. Понятие множества Множество - это совокупность определенных различаемых объектов, причем таких, что для каждого можно установить,
1 1. Множества Понятие множества. Логические символы Под множеством понимают совокупность определенных и отличных друг от друга объектов, объединенных.
1. Основные понятия теории графов 1. Основные понятия теории графов 2. Степень вершины Введение 5. Ориентированные графы 6. Изоморфизм графов 7. Плоские.
Лекция 2. Бинарные отношения и свойства 2008 г. Дискретная математика. Математическая логика ИОПИОПИОПИОП МИФИ Проф., д.т.н. Гусева А.И., доцент Порешин.
Данная работа подготовлена для учителей математики и информатики. Имеет цель ознакомления учащихся на уроках и факультативных занятиях. Автор: учитель.
Лекция 1 Основные понятия ст.преп Касекеева А.Б..
Понятия теории множеств П онятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким.
Теория множеств. Определение Множество одно из ключевых понятий математики, в частности, теории множеств и логики. Понятие множества является одним из.
ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. Множества Для любых объектов м множество этих объектов обозначается через. Следует отметить, что объект а и множество {а} -
Множество – это совокупность однотипных элементов или объектов, объединённых по некоторому признаку, интересному для данного рассмотрения или анализа.
Транксрипт:

1 Конечные и бесконечные множества Конечное множество- множество, состоящее из конечного числа элементов. Бесконечное множество – непустое множество, не являющееся конечным. Пример: Множество натуральных чисел является бесконечным. Упорядоченное множество – множество, каждому элементу которого поставлено в соответствие некоторое число (номер этого элемента) от 1 до n, где n – число элементов множества.

2 Взаимно однозначное соответствие А В (a, b)

3 Мощность множества Мощность множества, кардинальное число множества – характеристика множеств (в том числе бесконечных), обобщающая понятие количества (числа) элементов конечного множества.

4 Множество подмножеств Например, возьмем множество из 2-х элементов: РАЗ, ДВА (и обчелся). Подмножествами этого множества будут 4 множества(!): 1) РАЗ, ДВА - (любое множество подмножество самого себя) 2) РАЗ 3) ДВА 4) пустое - (т.е. "обчелся").

5 Булеан Другой пример: А И Б (сидели на трубе) Подмножествами этого множества из трех элементов будет 8 множеств: 1) А, И, Б 2) А, И 3) А, Б 4) И, Б 5) А 6) И 7) Б 8) пустое

6 Бинарные отношения Бинарным отношением между элементами множеств А и В называется любое подмножество R A B. Если множества A и B совпадают А=В, то R называют бинарным отношением на множестве А. (однородное отношение) Если (x, y) R, то это обозначают еще xRy и говорят, что между элементами x и y установлено бинарное отношение R. n-местным (n-арным) отношением, заданным на множествах M 1, M 2,…, M n, называется подмножество прямого произведения этих множеств. Иногда понятие отношения определяется только для частного случая M=M 1 =M 2 =…=M n.

7 Примеры Отношение a= {(4, 4), (3, 3), (2, 2), (4, 2)} на множестве X = {4, 3, 2} можно определить как свойство "Делится" на этом подмножестве целых чисел. Из школьного курса На множестве целых чисел Z отношения "делится", "делит", "равно", "больше", "меньше", "взаимно просты"; на множестве прямых пространства отношения "параллельны", "взаимно перпендикулярны", "скрещиваются", "пересекаются", "совпадают"; на множестве окружностей плоскости "пересекаются", "касаются", "концентричны".

8 Пример Пусть A=B=R, пара (x, y) является точкой вещественной плоскости. Тогда бинарное отношение R 1 = { (x, y) | x 2 + y 2 1 } определяет замкнутый круг единичного радиуса с центром в точке (0,0) на плоскости, отношение R 2 = { (x, y) | x y } полуплоскость, а отношение R 3 = { (x, y) | |x-y| 1 } полосу.

9 Способы задания Перечисление всех пар из базового множества А и базового множества В A={a 1,a 2 } B={b 1,b 2,b 3 }, ={(a 1, b 1 ), (a 1,b 3 ), (a 2, b 1 )} Отношения могут задаваться формулами: формулы y = x 2 +5x - 6 или x + y < 5 задают бинарные отношения на множестве действительных чисел; формула x + y = любовь, задает бинарное отношение на множестве людей.

10 Графический метод задания a= {(a, d), (a, c), (b, b), (c, a), (e,d), (e, a)}

11 Графовое представление Граф - фигура состоящая из точек (вершин) соединенных линиями (дугами). Вершины графа соответствуют элементам множества А, то есть x i, а наличие дуги, соединяющей вершины x i и x j, означает, что (x i,x j ) R. Чтобы подчеркнуть упорядоченность пары на дуге ставится стрелка. А={(a, b), (a, c), (b, d), (c, e), (e,b), (e, e)}

12 Матричная форма задания Пусть на некотором конечном множестве X задано отношение А. Упорядочим каким-либо образом элементы множества X = {x 1, x 2,..., x n } и определим матрицу отношения A = [a ij ] следующим образом:

13 Определения Диагональ множества A A, т.е. множество ={(x,x) | x A}, называется единичным бинарным отношением или отношением равенства в A. Областью определения бинарного отношения R называется множество R={ x A | y B, (x, y) R }. Областью значений бинарного отношения R называется множество R={ y B | x A, (x, y) R }. Образом множества X относительно отношения R называется множество R(X) = { y B | x X, (x, y) R }; прообразом X относительно R называется R -1(X).

14 Операции над бинарными отношениями Пересечение двух бинарных отношений R 1 и R 2 - это отношение R 1 R 2 = { (x, y) | (x, y) R 1 и (x, y) R 2 }. = > Объединение двух бинарных отношений R 1 и R 2 - это отношение R 1 R 2 = { (x, y) | (x, y) R 1 или (x, y) R 2 }. Разностью отношений R 1 и R 2 называется такое отношение, что: R 1 \R 2 = { (x, y) | (x, y) R 1 и (x, y) R 2 } Дополнение к отношению R={ (x, y) | (x, y) (A A)\R}.

15 Обратное отношение R –1 = { (x, y) | (y, x) R}.

16

17 Композиция отношений Двойственное отношение R d = Композиция (суперпозиция) отношений R=R 1 oR 2 содержит пару (x, y) тогда и только тогда, когда существует такое z A, что (x, z) R 1 и (z, y) R 2.

18 Свойства отношений R 1 содержится в R 2 (R 1 R 2 ), если любая пара (x, y), которая принадлежит отношению R 1 также принадлежит и отношению R 2 Рефлексивность xM (xRx) Антирефлексивность xM ¬(xRx)

19 Рефлексивность отношений Обозначим через Ix отношение на множестве X, состоящее из пар вида (a, a), где a X: Ix = {(a, a)| a X}. Отношение Ix обычно называют диагональю множества X или отношением тождества на X. Очевидно, что отношение R на множестве X рефлексивно, если диагональ Ix является подмножеством множества a: Ix R. Отношение антирефлексивно, если диагональ Ix и отношение R не имеют ни одного общего элемента: Ix R = Ø.

20 Свойства отношений Симметричность xRy yRx или R=R -1

21 Свойства отношений Антисимметричность Пусть А - множество людей в данной очереди. Отношение R "не стоять за кем-то в очереди" будет антисимметричным. Пусть х=ВАСЯ, а y=ИВАНОВ. Тот факт, что (x, y) R означает, что "ВАСЯ не стоит в очереди за ИВАНОВЫМ", (y, x) R - "ИВАНОВ не стоит за ВАСЕЙ". Очевидно, что одновременное выполнение обоих включений может быть, только если ВАСЯ и есть ИВАНОВ, т.е. x = y. Отношение " " также антисимметрично: если x y и y x, то x=y. Асимметричность Асимметричность эквивалентна одновременной антирефлексивности и антисимметричности отношения.

22 Свойства отношений Для любого отношения R вводятся понятия симметричной части отношения R s = R R -1 и асимметричной части отношения R a = R \ R s. Если отношение R симметрично, то R= R s, если отношение R асимметрично, то R= R a. Примеры. Если R - " ", то R -1 - " ". Транзитивность отношений

23 Нетранзитивное отношение Отношение R, определенное на некотором множестве и отличающееся тем, что для любых х, у, z этого множества из xRy и yRz не следует xRz. Пример нетранзитивного отношения: «x отец y» Нетранзитивным является отношение " ". Пусть x=2, y=3, z=2, тогда справедливо x y и y z, но x=z, т.е. (x, z) R.

24 Негатранзитивность отношений (x,y) R и (y, z) R (x, z) R В графе негатранзитивного отношения отсутствие дуг от х к у и от у к z приводит к отсутствию дуги от х к z. Отношения R 1 - ">" и R 2 - " " негатранзитивны, так как отношения R 1 доп - " ", R 2 доп - "=" транзитивны. Возможно одновременное выполнение свойств транзитивности и негатранзитивности. Например, отношение R 1 одновременно транзитивно и негатранзитивно, а R 2, как известно, транзитивным не является.

25 Свойства бинарных отношений Полнота (x, y) X либо xRy либо yRx, либо и то и другое одновременно – полносвязное или связное отношение Ацикличность Отношение R называется ацикличным, если из наличия какого-либо пути между вершинами соответствующего графа следует отсутствие обратной дуги (обратного пути) между этими вершинами (в графе отсутствуют любые циклы ). n x 1 Rx 2 x 2 Rx 3 x 3 Rx 4 … x n-1 Rx n но не наоборот.