Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление.

Презентация:



Advertisements
Похожие презентации
Элементы векторной алгебры Кафедра высшей математики ТПУ Лектор: доцент Тарбокова Татьяна В асильевна.
Advertisements

Глава II. Векторная алгебра. Элементы теории линейных пространств и линейных операторов Раздел математики, в котором изучаются свойства операций над векторами,
Тема 8. «Векторы на плоскости и в пространстве» Основные понятия: 1.Определение вектора, основные определения и линейные операции над векторами 2.Скалярное.
3. Понятие линейной зависимости и независимости. Базис Пусть L – линейное пространство над F, a 1,a 2, …, a k L. ОПРЕДЕЛЕНИЕ. Говорят, что векторы a 1,a.
Векторная алгебра Разложение вектора по базису Системы координат Декартова прямоугольная система координат Скалярное произведение векторов Свойства скалярного.
Математика Лекция 3 (продолжение) Разработчик Гергет О.М.
В е к т о р ы. О с н о в н ы е п о н я т и я.. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
Элементы векторной алгебры. Лекции 5-7. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
Элементы векторной алгебры.. Определение Совокупность всех направленных отрезков, для которых введены операции: - сравнения - сложения - умножения на.
Векторная алгебра Основные понятия. Математическая величина Скалярная величина (характеризуется численным значением) Векторная величина (Характеризуется.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Тема 2 «Скалярные и векторные величины» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Линейные операции.
Муниципальный лицей 6 Выполнил Пронин Николай Проверила Клин Елена Рафаиловна Проверила Клин Елена Рафаиловна Выполнил Пронин Николай Проверила Клин Елена.
Вектор Вектор – направленный отрезок. Другими словами, вектором называется отрезок, для которого указано, какой из его концов является началом, а какой.
Векторная алгебра. Основные понятия.. Декартовые прямоугольные координаты на плоскости. Координатами точки на плоскости называются числа, определяющие.
ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ Лекция 3. План лекции: Понятие вектора. Действия над векторами. Линейно зависимые и линейно независимые векторы. Размерность.
Векторы Линейная комбинация векторов. Пусть даны векторы: Любой вектор вида называется линейной комбинацией данных векторов. Числа -коэффициенты линейной.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Простейшие задачи векторной алгебры. Скалярное произведение векторов.
Лекция 2 для студентов 1 курса, обучающихся по специальности – Клиническая психология к.п.н., доцент Шилина Н.Г. Красноярск, 2014 Тема: Элементы.
Презентацию подготовил ученик 9 класса «В» Азимов Марат.
Транксрипт:

Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В векторной алгебре изучаются линейные операции над свободными векторами (сложение векторов и умножение вектора на число) и различные произведения векторов (скалярное, псевдоскалярное, векторное, смешанное и двойное векторное). В векторном анализе изучают векторы, являющиеся функциями одного или нескольких скалярных аргументов.

§ 1. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов ОПРЕДЕЛЕНИЕ. Вектором называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец).

Расстояние от начала вектора до его конца называется длиной (или модулем) вектора. Вектор, длина которого равна единице, называется единичным. Вектор, начало и конец которого совпадают, называется нулевым. Нулевой вектор не имеет определенного направления и имеет длину, равную нулю. Векторы, лежащие на одной или параллельных прямых, называются коллинеарными (параллельными).

Все нулевые векторы считаются равными Три вектора, лежащие в одной или в параллельных плоскостях, называются компланарными.

2. Линейные операции на множестве векторов 1) Умножение на число; 2) Сложение векторов

СВОЙСТВА ЛИНЕЙНЫХ ОПЕРАЦИЙ НАД ВЕКТОРАМИ

3. Понятия линейной зависимости и независимости. Базис ОПРЕДЕЛЕНИЕ. Говорят, что векторы ā 1, ā 2, …, ā k линейно зависимы, если существуют числа 1, 2, …, k, не все равные нулю и такие, что линейная комбинация 1 · ā · ā 2 + …+ k · ā k равна нулевому вектору ō Если равенство 1 · ā · ā 2 + …+ k · ā k = ō возможно только при условии 1 = 2 = …= k =0, то векторы ā 1, ā 2, …, ā k называют линейно независимыми. ЛЕММА 2 (необходимое и достаточное условие линейной зависимости векторов). Векторы ā 1, ā 2, …, ā k линейно зависимы тогда и только тогда, когда хотя бы один из них линейно выражается через оставшиеся. Замечание. Часто в качестве определения линейно зависимых векторов берут формулировку леммы 2.

Пусть V (3) (V (2) ) – множество свободных векторов пространства (плоскости). ОПРЕДЕЛЕНИЕ. Максимальное линейно независимое множество векторов в V (3) (V (2) ) называется базисом этого множества. Иначе говоря, векторы ā 1, ā 2, …, ā n V (3) (V (2) ) образуют базис в этом множестве если выполняются два условия: 1) ā 1, ā 2, …, ā n – линейно независимы; 2) ā 1, ā 2, …, ā n, ā – линейно зависимы для любого вектора ā из V (3) (V (2) ). ТЕОРЕМА 3. Любые два базиса множества V (3) (V (2) ) состоят из одного и того же числа векторов. ЛЕММА 4 (о базисе V (3) и V (2) ). 1) Базисом множества V (2) являются любые два неколлинеарных вектора. 2) Базисом множества V (3) являются любые три некомпланарных вектора.

СЛЕДСТВИЕ (критерий линейной зависимости 2-х и 3-х ненулевых векторов). 1) Два ненулевых вектора линейно зависимы тогда и только тогда, когда они коллинеарны. 2) Три ненулевых вектора линейно зависимы тогда и только тогда, когда они компланарны ТЕОРЕМА 5 (о базисе). Каждый вектор множества V (3) (V (2) ) линейно выражается через любой его базис, причем единственным образом.