Преобразователи AC-AC (ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ) Лекция 11.

Презентация:



Advertisements
Похожие презентации
Рациональное использование электроэнергии в электроприводах.
Advertisements

Электропривод. Ч.1 1 Лекция 6. Регулирование скорости вращения электроприводов с асинхронным двигателем. 1. Основные показатели, характеризующие различные.
МЭИ, кафедра АСУ ТП Г.С. Савельев С.В. Мезин, К.т.н., доцент 2015 г. МосводоканалНИИпроект.
1 РОССИЙСКОЕ ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ» Филиал ОАО «СО - ЦДУ ЕЭС» «Региональное диспетчерское управление энергосистемы.
Лекция 12 Емкостные преобразователи Емкостный преобразователь представляет собой конденсатор, электрические параметры которого изменяются под действием.
Инвертирование в преобразовательной технике – это преобразование постоянного напряжения в переменное. Инверторы сварочных источников питания выполняются.
Лекция 3 Силовые транзисторы Основные классы силовых транзисторов Транзистор – это полупроводниковый прибор, содержащий два или более p-n переходов и работающий.
Обучение, ориентированное на конкретное применение Официальный дилер.
ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА. Асинхронные машины Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается.
2008 г. Санкт-Петербург ЛЭЗ НПП РУСЭЛПРОМ-ЭЛЕКТРОМАШ Москва Екатеринбург РУСЭЛПРОМ-ИНЖИНИРИНГ Сафоново СЭЗ Владимир ВЭМЗ-Спектр ВЭМЗ НИПТИЭМ.
Электрический ток вырабатывается в генераторах - устройствах, преобразующих энергию того или иного вида в электрическую энергию. Переменный ток можно.
Преобразователи AC-AC Лекция Определение Преобразователь, который изменяет АС сигнал на АС с альтернативным напряжением, частотой, фазой,
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ.
1 ЭЛЕКТРОТЕХНИЧЕСКАЯ ПРОМЫШЛЕННАЯ КОМПАНИЯ Комплексная система автоматизированного дистанционного управления технологическими процессами и визуализации.
Электрическая передача тепловозов Электрическая передача тепловозов превращает механическую энергию, получаемую от дизеля, в электрическую энергию при.
Лекция 8 Преобразователи с сетевой коммутацией. Общие сведения Основными силовыми электронными устройствами являются преобразователи, осуществляющие преобразование.
Преимущества систем водоснабжения с водонапорными башнями по сравнению с системами, использующими частотно-регулируемый привод.
Лекция 8 Электрические двигатели. 8.1 Общие сведения об электрических двигателях 8.2 Электродвигатели переменного тока 8.3. Электродвигатели постоянного.
Презентация на тему: «Трансформатор» Ученика 11 «А» класса Моделкина Юрия.
ВЭМЗ-Спектр это: Поставка комплектного ЧРЭП на базе ПЧ ведущих мировых производителей и электродвигателей собственного производства Комплексное решение.
Транксрипт:

Преобразователи AC-AC (ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ) Лекция 11

Преобразователь частоты Преобразователь частоты (частотно-регулируемый электропривод) представляет из себя статическое преобразовательное устройство, предназначенное для изменения скорости вращения асинхронных электродвигателей переменного тока. Преобразователь частоты преобразует напряжение одной частоты на другую с управляемым напряжением и частотой. Устроенный на полупроводниках преобразователь частоты называют еще статическим преобразователь частоты, потому что первоначально преобразователи частоты были электромашинные, т.е. нестатическими. Преобразователи частоты бывают двух видов: преобразователь частоты с промежуточным звеном постоянного тока преобразователь частоты непосредственный

Преобразователь частоты должен иметь: требуемое входное и выходное напряжение и мощность максимальный и не зависимый от нагрузки КПД близкое к синусоидальному выходное напряжение возможность регулировать выходное напряжение и частоту в больших пределах требуемую степень защиты корпуса низкий электромагнитный и акустический шум большую надежность и срок работы Кроме того они должны: работать параллельно работать на холостом ходу иметь простое использование и обслуживание Характеристики

Преобразователи частоты с промежуточным звеном Преобразователи частоты с промежуточным звеном постоянного тока имеют на стороне питающей сети выпрямитель, на выход которого включается автономный инвертeр. Между выпрямителем и инвертeром находится так называемое промежуточное звено постоянного тока, которое сглаживает ток и напряжение и накапливает энергию.

Достоинства преобразователя частоты 1.Независимость выходной частоты f2 (инвертер) от входной частоты f1(сеть). Теоретически можно обеспечить любую по величине частоту. 2.Частота ограничивается свойствами ключей инвертера И по быстродействию (предельные частоты переключений). 3. Простота обеспечения регулирования напряжения (выпрямитель) и выходной частоты (инвертер), особенно при применении полностью управляемых полупроводниковых ключей в инвертере.

Преобразователь с промежуточным звеном постоянного тока Итак Принцип работы Преобразователь частоты состоит из выпрямителя, фильтра сглаживания и автономного инвертера. Переменное напряжение выпрямляется и преобразуется в переменное напряжение с изменяемой амплитудой и частотой. Изменением напряжения и частоты можно управлять скоростью вращения трехфазных электродвигателей в больших пределах, начиная с нуля до многократной номинальной скорости.

Упрощенная схема Промежуточные звенья постоянного тока используют несколько видов. В звене постоянного тока обычно устанавливается фильтр того или иного типа, содержащий индуктивность L или емкость С. Если инвертер является инвертером тока, то в качестве фильтра используется дроссель L (реактор), сглаживающий входной ток. Если же инвертер является инвертером напряжения, то в фильтре используются емкость С, индуктивность L, а в некоторых случаях – только емкость С, сглаживающая пульсации напряжения на выходе выпрямителя. Роль емкости состоит также в обмене реактивной энергией с индуктивностью нагрузки на коммутационных интервалах инвертера.

Общие положения Схема преобразователя частоты состоит из силовой и управляющей частей. Силовая часть преобразователей обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита). В качестве электронных ключей в инвертерах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Общие положения Достоинства Главным достоинством тиристорных преобразователей частоты является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия. Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%). Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением кВ и выше. Недостатки Их вес на один кВт выходной мощности самый большой в классе высоковольтных преобразователей. Тиристор является полууправляемым прибором: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется дополнительная система управления.

Резюме У преобразователей AC/AC с dc связью очень широкое использование. Минимальная мощность таких преобразователей измеряется ваттами, а максимум может приблизиться к мегаваттам. Лучшие модели могут передать энергию в любом направлении, в зависимости от последовательности переключения. Однако, у этих схем есть типичные недостатки. Высокий уровень искажения напряжения затрагивает работу другого оборудования, связанного с системой электропитания

Применение Используют преобразователи частоты для насосов, электротранспорта, станков, компрессоров, конвейеров, кранов, текстильных и бумажных машин, приводов на асинхронных и синхронных машинах для получения регулируемой скорости вращения. Выходное напряжение преобразователей частоты достигает 10кW, мощность несколько МW и частота до кНz. Используя преобразователи частоты, можно заменить машины постоянного тока на более надежные асинхронные и синхронные машины. Несмотря на немалую стоимость современных ПЧ, средняя окупаемость вложенных средств за счёт экономии ресурсов составляет года.

Результаты применения преобразователей частоты I В жилищно-коммунальном хозяйстве Преимущества регулируемого электропривода в насосных системах в сравнении с нерегулируемым электроприводом насоса. Снижение энергопотребления до 60% Снижение расхода воды на 25% Устранение гидроударов, разрушающих систему водоснабжения Срок окупаемости нового оборудования 5-6 месяцев. Это определило повсеместное внедрение в промышленно развитых странах регулируемого привода насосных агрегатов. Применение преобразователей частоты и программируемых контроллеров в технологических процессах Применение средств автоматизации позволяет значительно увеличить точность выполнения технологического процесса. При этом: Снижается время плавки и расход электродов (в дуговых сталеплавильных печах) Снижается расход электроэнергии Повышается средний коэффициент мощности Повышается качество металла

Результаты применения преобразователей частоты II Модернизация подъемно-транспортных механизмов Применение частотно-регулируемых приводов в подъемно-транспортных механизмах позволяет: Повысить энергетические характеристики электроприводов по сравнению с параметрическими преобразователями и реостатным регулированием Существенно повысить скорость и качество регулирования скорости Добиться плавности пуска и торможения Повысить комфортность управления и сохранность груза Избежать резких толчков, что позволит значительно продлить срок службы всех механических элементов крана В лифтовых применениях В лифтовых применениях переход к частотно-регулируемому электроприводу позволяет значительно (на 50-60%) снизить расход электроэнергии, увеличить надежность работы схемы благодаря ограничению ударных моментов в переходных режимах, обеспечить эргономические требования по ограничению рывков и ускорений, применять более дешевые односкоростные асинхронные двигатели. Применение частотно-регулируемого привода значительно снижает элементную базу системы управления, тем самым, повысив ее надежность и расширить возможности системы управления до границ, определенных требованиями технологических процессов с участием г рузоподъемных механизмов

Результаты применения преобразователей частоты III Применение электропривода для решения задач поддержания уровня в резервуарах В системах поддержания заданного уровня жидкости в резервуаре при использовании нерегулируемого электропривода задача обычно решается при работе двигателя в так называемом "старт-стопном режиме", когда происходит периодическое включение (отключение) двигателя при достижении минимальных (максимальных) значений уровня жидкости. Использование частотно-регулируемых асинхронных электроприводов позволяет поддержать практически постоянный уровень жидкости независимо от ее расхода (притока), исключить удары в системе, связанные с частыми пусками двигателя, и снизить расход электроэнергии. В мировой практике регулируемый электропривод признан одной из наиболее эффективных энерго-ресурсо-сберегающих, экологически чистых технологий.

Устройства плавного регулирования частоты вращения двигателей в насосных агрегатах (Устройства плавного пуска) Применение устройств плавного регулирования частоты вращения двигателей в насосных агрегатах, помимо экономии электроэнергии, дает ряд дополнительных преимуществ, а именно: плавный пуск и останов двигателя исключает вредное воздействие переходных процессов (типа гидравлический удар) в напорных трубопроводах и технологическом оборудовании; пуск двигателя осуществляется при токах, ограниченных на уровне номинального значения, что повышает долговечность двигателя, снижает требования к мощности питающей сети и мощности коммутирующей аппаратуры; возможна модернизация действующих технологических агрегатов без замены насосного оборудования и практически без перерывов в его работе.

Оптимизация энергопотребления в частотно- регулируемом приводе Частотно-регулируемый электропривод имеет встроенные функции оптимизации энергопотребления. Суть заключается в более гибком управлении напряжением двигателя при изменении нагрузки, что позволяет в некоторых режимах дополнительно сэкономить до 30% потребляемой электроэнергии за счет снижения потерь в двигателе. Режим энергосбережения особенно актуален для механизмов, которые часть времени работают с пониженной нагрузкой. Примером могут служить конвейеры, насосы, вентиляторы и т.п. Учитывая тот факт, что во многих случаях асинхронные двигатели выбираются с существенным запасом по мощности и, следовательно, часто работают с неполной нагрузкой, можно ожидать высокой эффективности широкого использования энергосберегающих преобразователей частоты.

Управление выходным напряжением и частотой Если асинхронный двигатель не питается от преобразователя частоты, то надо обеспечить, чтобы магнитная индукция в воздушном зазоре двигателя осталась неизменной независимо от частоты. Также надо следить, чтобы ток статора не превышал номинального. Такое управление называют управление с постоянным магнитным потоком. Преобразователь частоты преобразует входное напряжение 220В/380В частотой 50Гц, в выходное импульсное напряжение посредством ШИМ, которое формирует в обмотках двигателя синусоидальный ток частотой от 0Гц до 400Гц или даже до 1600Гц. Таким образом, плавно увеличивая частоту и амплитуду напряжения, подаваемого на обмотки асинхронного электродвигателя, можно обеспечить плавное регулирование скорости вращения вала электродвигателя. Экономия электроэнергии при использовании регулируемого электропривода для насосов в среднем составляет % от мощности, потребляемой насосами при дроссельном регулировании. Это определило повсеместное внедрение в промышленно развитых странах регулируемого привода.

Основные преимущества Основным преимуществом применения частотно-регулируемого управления электродвигателями насосов и вентиляторов является снижение затрат на электроэнергию, за счет более эффективного управления электроприводом при различных нагрузках. Даже небольшое снижение скорости вращения электропривода (на 10%) дает значительную экономию в потребляемой электрической мощности (до 30%). Плавный пуск, останов двигателя, ограничение тока в обмотках двигателя обеспечивают увеличение срока службы не только электропривода, но и технологического оборудования в целом. Встроенный ПИД- регулятор позволяет строить замкнутые системы управления с возможностью точного автоматического подержания заданных технологических параметров. В случае насоса и вентилятора такими параметрами могут быть давление, температура, расход, влажность. При этом такая система эффективней и экономичней, чем система с поддержанием параметра с помощью регулирующего клапана или заслонки.

Примерная схема экономического эффекта от использования ПЧ

Частотный преобразователь ACS350 - АВВ Приводы ACS350 (0,37.22 кВт, 0,5.30 л.с.)

Преобразователи частоты SINAMICS G мощностью от 75 до 560 кВт О тличительные особенности: Интегрированные функции Комплексная интеграция в инжиниринг Высокий уровень гибкости и возможность использования различных комбинаций компонентов Широкий спектр предлагаемых продуктов и услуг

Перспективы ЧАСТОТНЫХ ПРЕОБРАЗОВАТЕЛЕЙ Для управления асинхронными электродвигателями с 2006 г. происходит постепенный переход к следующему поколению приводов высокого напряжения - Sinamics GM150. Приводы Sinamics GM150 объединяют в себе преимущества своих предшественников с обновленной конструкцией, а также новую управляющую платформу приводов Sinamics от компании Siemens. "Для пользователей марка Sinamics означает унифицированные принципы построения частотно-регулируемых приводов в диапазоне напряжений от 230 до 7200 В и мощностей от 0,12 кВт до 30 МВт"

MICROMASTER 4 Привода с высокими динамическими показателями - MICROMASTER от 7.5 до 250 кВтMICROMASTER 430 Для насосов и вентиляторов - MICROMASTER от 0.12 до 11 кВтMICROMASTER 420 Универсальный преобразователь для любой задачи - MICROMASTER от 0.37 до 3 кВтMICROMASTER 411 Преобразователь частоты для задач с децентрализованной периферией - MICROMASTER от 0.12 до 0.75 кВтMICROMASTER 410 Начиная с MICROMASTER 410 для стандартных решений до приводов с высокими динамическими показателями MICROMASTER 440 с бездатчиковым векторным управлением в диапазоне мощностей до 250 кВт.

Частотно- регулируемый привод Современный частотно-регулируемый электропривод состоит из асинхронного или синхронного электрического двигателя и преобразователя частоты.

Электрический двигатель преобразует электрическую энергию в механическую энергию и приводит в движение исполнительный орган технологического механизма. Преобразователь частоты управляет электрическим двигателем. На выходе преобразователя формируется электрическое напряжение с переменными амплитудой и частотой. Название «частотно регулируемый электропривод» обусловлено тем, что регулирование скорости вращения двигателя осуществляется изменением частоты напряжения питания, подаваемого на двигатель от преобразователя частоты.

Асинхронный электрический двигатель

Скалярное и векторное частотное управление. В наиболее распространенном частотно-регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление. При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, КПД, коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения

При скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. При изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя. При постоянстве перегрузочной способности номинальные коэффициент мощности и КПД двигателя на всем диапазоне регулирования частоты вращения практически не изменяются. Скалярное управление

На малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания. Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей. Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Спасибо за внимание!