Структура электродинамических сил, ускорение плазмы и генерация обратных токов в токовых слоях А.Г. Франк, Н.П. Кирий, С.Н. Сатунин Институт общей физики.

Презентация:



Advertisements
Похожие презентации
Генерация сверхальфвеновских сверхтепловых потоков плазмы в токовых слоях А.Г. Франк, Н.П. Кирий, С.Н. Сатунин Институт общей физики им. А.М. Прохорова.
Advertisements

Plasma populations in the tail of induced magnetosphere O. Vaisberg Space Research Institute (IKI), Moscow, Russia, Talk outlay Mars missions studying.
Физика плазмы в солнечной системе, ИКИ РАН, Влияние магнитного шира на «анизотропное» плазменное равновесие в хвосте магнитосферы Земли.
AFM-Raman and Tip Enhanced Raman studies of modern nanostructures Pavel Dorozhkin, Alexey Shchekin, Victor Bykov NT-MDT Co., Build. 167, Zelenograd Moscow,
Recent advances in intercalation compounds physics.
Special relativity. Special relativity (SR, also known as the special theory of relativity or STR) is the physical theory of measurement in an inertial.
NMDB Kiel Meeting, 3-5/12/2008 On the possibility to use on-line one-minute NM data of NMDB network and available from Internet satellite CR data for.
Centrifugal force (rotating reference frame). Centrifugal force (from Latin centrum "center" and fugere "to flee") can generally be any force directed.
Diffraction and Interference. Interference and Diffraction Distinguish Waves from Particles O The key to understanding why light behaves like waves is.
Vortex lattice in presence of weak periodic pinning potential W. V. Pogosov and V. V. Moshchalkov Laboratorium voor Vaste-Stoffysica en Magnetisme, K.
The Pulse Generator for the Supersonic Flow Structure Control ГЕНЕРАТОР ИМПУЛЬСОВ ДЛЯ УПРАВЛЕНИЯ СТРУКТУРОЙ СВЕРХЗВУКОВОГО ПОТОКА Khristianovich Institute.
Coriolis effect. In physics, the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame. In a reference.
MATHEMATICAL MODEL OF ICE SHEET DEFORMATION CAUSED BY SUBMARINE MOTION V. M. Kozin, V. L. Zemlak, S. D. Chizhiumov Shipbuilding Department, State Technical.
Schrodingers Equation for Three Dimensions. QM in Three Dimensions The one dimensional case was good for illustrating basic features such as quantization.
7/23/20151 Relativistic electron beam transport simulation models German Kurevlev.
S12-1 NAS122, Section 12, August 2005 Copyright 2005 MSC.Software Corporation SECTION 12 RESIDUAL VECTOR METHOD.
Ionospheric model. Introduction Because of the complicated nature of the ionosphere, there have been numerous approaches for ionospheric modeling. In.
CONSTRAINTS 52. You do your CONSTRAINING in Sketcher mode to create your part to exacting dimensions. This is the opposite of free-form creating we have.
The reconstruction of coding scheme through errors distributions Lyakhovetskii V.A., Karpinskaya V.Ju*, Bobrova E.V. Pavlov Institute of Physiology of.
Time-Series Analysis and Forecasting – Part IV To read at home.
Транксрипт:

Структура электродинамических сил, ускорение плазмы и генерация обратных токов в токовых слоях А.Г. Франк, Н.П. Кирий, С.Н. Сатунин Институт общей физики им. А.М. Прохорова РАН VI Конференция «Физика плазмы в солнечной системе» в рамках Программы ОФН-15 РАН «Плазменные процессы в солнечной системе» 18 февраля 2011 г.

Цели и задачи исследований = Изучение динамики токовых слоев и процессов магнитного пересоединения на основе лабораторных экспериментов позволяют сопоставлять структуру магнитных полей, электрических токов и электродинамических сил, с одной стороны, с параметрами плазменных потоков, которые ускоряются в пределах слоя, с другой стороны. = В лабораторных экспериментах были зарегистрированы направленные движения плазмы со сверхтепловыми скоростями, которые можно, по-видимому, интерпретировать как аналог корональных выбросов массы (CME). Эти исследования дают возможность приблизиться к пониманию физической природы динамических явлений в атмосфере Солнца. Основные задачи данной работы: = Определение пространственно-временных характеристик электрического тока и электродинамических сил на основе анализа магнитных полей токовых слоев, развивающихся в различных условиях; = Регистрация направленных потоков плазмы, которые генерируются в токовых слоях; = Сопоставление направленных скоростей и энергий плазменных потоков с работой сил Ампера; выявление характерных особенностей ускорения плазмы.

Schematic of the CS-3D device = 2D magnetic field B = {-h y; -h x; 0} with the null-line at the z-axis, h 1 kG/cm; = Guide field B z aligned with the null line: B z 8 kG; = Superposition of B and B z forms a 3D magnetic configuration with the X line; = Vacuum chamber: quartz, 18 cm, L = 100 cm, is filled with a gas: He, Ar, Kr or Xe; = The initial plasma, N e 0 = cm -3, is produced by -discharge; = Both magnetic fields and the initial plasma are uniform in the z-direction: /z = 0; = Current along the X line: J z 100 kA, T / 2 = 6 s, results in current sheet formation; = Diagnostics: magnetic probes, interference-holography; spectroscopy, X-ray detectors. Cross-sectionSide view

Propagation of the magneto-acoustic wave and the in-plane plasma motions in the vicinity of the X line Magnetic field with the X line: B = {-h y; -h x; B Z } Perturbations of the magnetic field propagate as a converging magneto-acoustic wave (MAW) toward the X line in the (x, y) plane. A typical time interval for MAW propagation is defined by the local Alfven velocity: t A = (4 N i M i ) 1/2 / h. Plasma current: j = c /(4 ) rot B. Plasma dynamics is controlled by the Ampere forces: f = 1/c [j B]. Excitation of j Z currents behind the front of MAW brings about plasma compression in the y – direction and the outward motion in the x – direction.

Kr, p=36 mTorr; h=0.57 kG/cm; B Z 0 = kG; J Z =70 kA Formation of a current sheet in magnetic field with an X line ( in- plane component B X ) Amplification of the excess guide field B Z A.G. Frank, S.G. Bugrov, V.S. Markov // Phys. Lett. A 373, 1460 (2009)

Structure of the magnetic force lines in the (x, y) plane: A Z = const; A Z = 10 3 G cm 2D vacuum magnetic field Ar 20 mTorr; h = 0.64 kG/cm; J Z = 65 kA; t = 1.9 s In-plane magnetic field of the current sheet

2D distributions of plasma density at successive time moments t = 2.95 μs t = 3.95 μs t = 4.35 μs h = 0.43 kG/cm; B Z 0 = 2.9 kG; Ar filling, 28 mTorr; J Z max = 50 kA = Formation of a current sheet is accompanied by effective plasma compression into the sheet, with the maximum density 10 times higher than the initial density: N e max cm -3 = Plasma sheet can evolve in the 3D magnetic configuration, in the presence of the strong guide field B Z 0 along the X line. Frank A G et al. Phys. Plasmas (2005)

As the temperature increases, Ar +1 and Ar +2 ions become depleted successively turning to higher ionization states. As a result, the spectral lines Ar IV, Ar V, with Ar VI in some cases, should appear in the plasma emission spectrum. These lines, however, fall within a shorter-wavelength UV range (λ < 300 nm). Time evolution of plasma parameters in the sheet midplane: Effective ion charge Z eff Densities of argon ions N i (Ar +1 ÷ Ar +5 ) Electron density N e Electron temperature T e Voronov G.S. et al. Plasma Phys. Rep. 34, 999 (2008) h = 430 G/cm; Ar, 28 mTorr; J z max = 70 kA

Current distribution in the (x,y) plane is characterized by 2 different sizes: x / y 6 15 Ar, 20 mTorr; h = 0.64 kG /cm; J Z max = 65 kA; t = 1.9 s In-plane magnetic field components B X, B Y and current density j Z in the current sheet Distributions along the sheet width (x-axis), y = 0.8 cm Distributions along the sheet thickness (y-axis), x = 0.8 cm and x =-5 cm

Evolution of the current density j z 0 in the CS midplane and the y-dimensions of CS at the levels 0.5 j z 0 and 0.1 j z 0 Ar, x = 0.8 cm He, x = 0.8 cm He, x = -5 cm Ar, x = -5 cm

Scheme of two-channel spectral measurements with the use of a Nanogate 1-UF fast programmable CCD camera Ø z 1.5 cm Ø x 2.5 cm

Time behavior of the ion temperature T i and averaged energy of plasma flows W x Ar, 28 mTorr, h = 0.5 kG/cm, J z 75 kA Kyrie N.P. et al. Plasma Phys. Rep.36, 357 (2010) = T i, T e, Z i,av are maximum in the sheet midplane and increase with time; = T i > T e = The plasma is in transverse equilibrium (along the y-axis) with the magnetic field: N e (T e +T i /Z i ) + ( B Z ) 2 /8 B X 2 /8 ; 1

The Ampere force F x acting along the current sheet surface = 1.2 cm I z (x) = – c /2 {B x J (x) – [ B y J (x)/ x] }; j z (x) = I z (x) / 2 F x (x) = f x (x) 2 = -1/c I z (x) B y T (x); B y T = h x + B y J h = 0.57 kG/cm B Z 0 = 0 (2D) Ar, 28 mTorr J Z 100 kA; t 1.9 s F x max dynes cm -2

Plasma acceleration along the current sheet surface M i N i dv/dt = - p + 1/c [j B] = p is negligible along the current sheet surface (x-direction). = In the 2D magnetic configurations (B z = 0) the Ampere forces f x сome to play only in the presence of the normal magnetic field component B y T : f x = 1/c [j B] x -1/c (j z B y T ) = The average density of the Ampere force f X (x) was calculated on the basis of magnetic measurements: f x (x) -1/c I z (x) B y T (x) / 2 f X (x) dx N i W X eV cm -3 At N i cm -3 W X max 115 eV. = The time interval for accelerating the Ar (+1) ions is 3-5 s. = These estimations correlate with the measured energy of the Ar ions and the typical acceleration time.

Comparison between HeII 4686 Å and HeII 3203 Å line profiles observed in the x- and z-direction HeII 4686 Å HeII 3203 Å x-directionz-direction z = 2.4 Å x = 6.0 Å z = 1.6 Å x = 4.6 Å He, 320 mTorr; h = 500 G/cm; B z =0; J z max = 70 kA; t 3 s

Тепловые и направленные скорости ионов HeII в токовых слоях, He, 320 mTorr; h = 0.5 kG/cm; B z =0; B z = 2.9 kG J z max = 70 kA N e 0 ( ) cm -3 N e x cm -3 T i 50 eV W x 400 eV (B z = 0) развивающихся в 2D магнитном поле (B z = 0) или в 3D магнитной конфигурации (B z = 2.9 kG) Н.П. Кирий и др. Труды ФАС-XIX, С (2009) SLs: HeII nm; HeII nm

The Ampere force F x acting along the surface of a current sheet formed in the He plasma = 1.2 cm I z (x) = – c /2 {B x J (x) – [ B y J (x)/ x] }; j z (x) = I z (x) / 2 F x (x) = f x (x) 2 = -1/c I z (x) B y T (x); B y T = h x + B y J h = 0.5 kG/cm B Z 0 = 0 (2D) He, 320 mTorr J Z 70 kA; t 2.1 s F x max dyn cm -2 x cm

The y-dependence of the Ampere force f x (y) at x = -5 cm At the CS midplane (y = 0) there is a maximum in the current density j z (y), and a minimum in the value of the normal component B y T (y). The force f x (y) = -1/c j z (x) B y T (x) can have a local minimum near the midplane. We might expect effective plasma acceleration where plasma density is lower than at the CS midplane, i.e. at some distance along the y – axis. h = 0.63 kG/cm; Ar, 28 mTorr; J Z 70 kA; B Z 0 = 0

Ampere force f x (y) and plasma density N e (y) at x = -5 cm He, 320 mTorr h = 0.5 kG/ cm J z max = 70 kA The N e (y) distribution is very narrow as compared with the f x (y) distribution, so that the low-density plasma at wings of the N e (y) distribution can be effectively accelerated

Distributions of the current I z (x) at successive times. Development of reverse currents E z i 1/c (v x B y T ) h = 0.63 kG/cm Ar, 28 mTorr J Z 70 kA t = 2.3 s t = 3.5 s t = 4.5 s t = 5.0 s

Evolution of the currents I z (x) integrated over one-half the sheet (- R x 0) J z (+) = I z (+) (x) dx - direct currents in the region (x R x 0); J z (-) = I z (-) (x) dx - reverse currents in the region (-R x x R ); J z (S) = I z (x) dx - the total current in the whole region (-R x 0). x R (t) – the x-coordinate where the current I z (x) reverses its direction: I z (x R ) = 0. t, s The current I z (x) is concentrated in the region y = 0.8 cm h = 0.63 kG/cm Ar, 28 mTorr J Z 70 kA

Magnetic structure of current sheets, by S.I. Syrovatskii, JETP 1971 A current sheet with the reverse currents at the edges A current sheet without the reverse currents

Заключение = В экспериментах по изучению динамики токовых слоев и процессов магнитного пересоединения была исследована эволюция магнитных полей, что позволило определить основные особенности структуры электрических токов и электродинамических сил. = Измерены температуры ионов, электронов и энергии направленных движений плазмы. Обнаружены потоки плазмы, которые движутся вдоль поверхности токового слоя с энергиями, значительно превышающими тепловую энергию ионов. = Проведен анализ пространственной структуры сил [j B] и показано, что под действием этих сил должно происходить постепенное увеличение кинетической энергии направленного движения ионов вдоль поверхности токового слоя. = В результате энергия ионов у боковых концов слоя может достигать 100 эВ, что согласуется с непосредственно измеренными энергиями потоков плазмы при формировании слоя в Ar. = Обнаружено, что у боковых краев слоя возникают токи обратного направления по отношению к основному току, протекающему в центральной области слоя. = = Генерация обратных токов и их усиление со временем свидетельствуют о новых динамических эффектах в токовых слоях, возникающих при движении потоков плазмы в сильном поперечном магнитном поле, что, в свою очередь, приводит к изменению магнитной структуры слоя.

Спасибо за внимание!

Coronal Mass Ejections (CME) X-ray images of the Sun recorded with the SPIRIT device mounted on the Coronas-F satellite.

Experimental device CS-3D Institute of General Physics, Moscow, Russia 100 cm

Distributions over the current sheet thickness of the tangential magnetic field component B X (y), current density j Z (у) and excess guide field B Z (у) Ar, 28 mTorr; h = 0.57 kG/cm; B Z 0 = 4.3 kG; J Z 70 kA = The excess guide field B Z (у) is localized only in the regions where the basic current j Z flows. = The excess guide field B Z is supported by additional plasma currents in the (x, y) plane. = The total current on one side of the current sheet, J X 57 kA, is of the same order as the total basic current along the X line, which gives rise to the current sheet formation, J Z 70 kA.

Plasma dynamics in 3D magnetic field with the X-line and the guide field B z Deterioration of the current and plasma compression due to amplification of the guide field in the sheet Compression of the current, plasma and the guide field B z into the sheet

h = 430 G/cm; Ar, 28 mTorr; J z max = 70 kA Voronov G.S. et al. Plasma Phys. Rep. 34, 999 (2008) Ar +1 and Ar +2 ions are depleted in the sheet midplane with increasing T e and N e T e was determined from time behaviour of various spectral lines by using the SIMPTOS code including the processes of ionization, excitation and plasma flows. Spatiotemporal evolution of plasma parameters under study: Intensity of spectral line Ar II nm (Ar +1 ions) Intensity of spectral line Ar III nm (Ar +2 ions) Electron density N e and electron temperature T e