ЛЕКЦИЯ 27. Курс: Проектирование систем: Структурный подход Каф. Коммуникационных сетей и систем, Факультет радиотехники и кибернетики Московский физико-технический.

Презентация:



Advertisements
Похожие презентации
Copyright ® 2000 MSC.Software Introduction to MSC.Patran PAT301 Workbook October 2003 MSC.Software Corporation United States MSC.Patran Support Tel:
Advertisements

ЛЕКЦИЯ 16. Курс: Проектирование систем: Структурный подход Каф. Коммуникационные сети и системы, Факультет радиотехники и кибернетики Московский физико-технический.
Designing Network Management Services © 2004 Cisco Systems, Inc. All rights reserved. Designing the Network Management Architecture ARCH v
© 2006 Cisco Systems, Inc. All rights reserved. MPLS v MPLS Concepts Introducing MPLS Labels and Label Stacks.
Introducing Cisco Network Service Architectures © 2004 Cisco Systems, Inc. All rights reserved. Introducing the Cisco AVVID Framework ARCH v
THE CLASSIFICATION OF THE WALLS.. The wall - the main elements of the design of the building, and on the choice of their type depend on many parameters.
ЛЕКЦИЯ 26. Курс: Проектирование систем: Структурный подход Каф. Коммуникационные сети и системы, Факультет радиотехники и кибернетики Московский физико-технический.
© 2006 Cisco Systems, Inc. All rights reserved. MPLS v MPLS Concepts Introducing Basic MPLS Concepts.
S4-1 PAT325, Section 4, February 2004 Copyright 2004 MSC.Software Corporation SECTION 4 BUILDING COMPOSITE MODELS WITH MSC.PATRAN.
Federal State Educational Institution of Higher Professional Education "Moscow State Construction University" MASTER'S DISSERTATION THEME: Improving methodological.
ЛЕКЦИЯ 29. Курс: Проектирование систем: Структурный подход Каф. Коммуникационные сети и системы, Факультет радиотехники и кибернетики Московский физико-технический.
Effect of Structure Flexibility on Attitude Dynamics of Modernizated Microsatellite.
MSC.Software Corporation 2 MacArthur Place Santa Ana, CA 92707, USA Tel: (714) Fax: (714) Web: United States.
1 Where is the O(penness) in SaaS? Make sure youre ready for the next wave … Jiri De Jagere Senior Solution Engineer, Progress Software Session 123.
ЛЕКЦИИ (сокр. версия). Курс: Проектирование систем: Структурный подход Каф. Коммуникационные сети и системы, Факультет радиотехники и кибернетики.
Students: Veselkova DA 4th year student NIU "MGSU-IISS" IGES Galkin MV 4th year student NIU "MGSU-IISS" ISA Scientific adviser: Ph.D., Associate Professor.
MSC.Software Corporation 2 MacArthur Place Santa Ana, CA 92707, USA Tel: (714) Fax: (714) Web: United States.
© 2006 Cisco Systems, Inc. All rights reserved. BCMSN v Introducing Campus Networks Network Requirements.
S9-1 PAT328, Section 9, September 2004 Copyright 2004 MSC.Software Corporation SECTION 9 SUPPORT OF MSC.NASTRAN PLY DEFINITION (PCOMPG) BY MSC.PATRAN v2005.
© 2004 Cisco Systems, Inc. All rights reserved. ARCH v Module Summary The Enterprise Composite Network Model enables network designers to create.
Транксрипт:

ЛЕКЦИЯ 27. Курс: Проектирование систем: Структурный подход Каф. Коммуникационных сетей и систем, Факультет радиотехники и кибернетики Московский физико-технический институт (университет) / Марк Ш. ЛЕВИН Институт проблем передачи информации, РАН Ноябрь 12, 2004 ПЛАН: 1.Иерархический подход к диагностике сложных систем 2.Иерархическое оценивание составной системы: пример для здания: *модель здания и шкалы оценки для частей здания *метод интегрирующих таблиц *иерархический комбинаторный синтез *операции изменения и планирование процесса upgrade

Много-уровневая диагностика сложной (составной) системы ПРОЦЕСС УПРАВЛЕНИЕ ВХООДВЫХОД ДИАГНОСТИКА

F1F1 F6F6 F3F3 F2F2 F1F1 F5F5 F4F4 ПРОЦЕСС F6F6 F 2&3 F2F2 F3F3 F4F4 F5F5 F 4&5 Много-уровневая диагностика сложной (составной) системы

ШКАЛА РАЗРУШЕНИЕ ПЛОХОХОРОШО F1F1 F2F2 F3F3 F4F4 F5F5 F6F6 Много-уровневая диагностика сложной (составной) системы ОТЛИЧНО

F 2&3 F2F2 F3F3 F 4&5 F4F4 F5F5 F 1 и F 2&3 и F 4&5 и F 6 РЕЗУЛЬТИРУЮЩАЯ ОЦЕНКА Много-уровневая диагностика сложной (составной) системы

Example of building (evaluation from the viewpoint of earthquake engineering) Cantilever balcony Parapet wall

Generalized ordinal scale for damage 1.Distriction (global) 2.Distriction (local) 3.Chinks 4.Small chinks (hair like) 5.Without damage

Hierarchical model of building and corresponding scales Foundation 1.1 Basic structure 1.2 Floors 1.3 Building: S = A*B*C A C B F JI D HGE Frame Bearing structures Nonbearing structures Staircase Rigity core Partitioning walls Filler walls X X X X X X XXX X X X X XX X Example 1 Example 2

Method 1: integration tables E G H D Bearing structures D (1.2.1), scale [3,4,5]

Method 1: integration tables Nonbearing structures F (1.2.2), scale [2,3,4,5] J I

Method 1: integration tables Basic structure B (1.2), scale [2,3,4,5] F D

Method 1: integration tables A B C S Building S, scale [2,3,4,5] A B C S A B C S

Method 2: Hierarchical morphological design (combinatorial synthesis) Foundation 1.1 Basic structure 1.2 Floors 1.3 Building: S = A*B*C A C B F JI D HGE Frame Bearing structures Nonbearing structures Staircase Rigity core Partitioning walls Filler walls A 1 (2) A 2 (1) A 3 (2) C 1 (1) C 2 (3) C 3 (3) H 1 (1) H 2 (2) H 3 (3) J 1 (1) J 2 (3) J 3 (2) E 1 (1) E 2 (2) G 1 (1) G 2 (2) I 1 (2) I 2 (2) I 3 (1) I 4 (1) D 1 =E 1 *G 1 *H 1... D 12 =... F 1 =I 1 *J 1... F 12 =... B 1 =D 1 *F 7... B 16 =... S 1 =A 2 *B 1 *C 1 S 2 =A 2 *B 3 *C 1 S 3 =A 2 *B 4 *C 1 S 4 =A 2 *B 13 *C 1

Method 2: Hierarchical morphological design (combinatorial synthesis) Design Alternatives for Building Foundation A : A 1 (strip foundation), A 2 (bedplate foundation), A 3 (isolated parts) Frame E : E 1 (monolith frame), E 2 (precast frame) Rigidity core G : G 1 (monolith rigid core), G 2 (precast rigid core) Stair case H : H 1 (monolith staircase), H 2 (precast staircase), H 3 (composite staircase) Filler walls I : I 1 (small elements), I 2 (curtain panel walls), I 3 (precast enclose panel walls), I 4 (frame walls) Partitioning walls J : J 1 (precast panel walls), J 2 (small elements), J 3 (frame walls) Floors C : C 1 (monolith slabs), C 2 (composite slabs), C 3 (precast slabs)

Method 2: Hierarchical morphological design (combinatorial synthesis) E1E2G1G2E1E2G1G2 G 1 G 2 H 1 H 2 H NOTE: 3 corresponds to the best level of compatibility 0 corresponds to incompatibility J1J2J3J1J2J3 I 1 I 2 I 3 I Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis) D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 D 11 D 12 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F NOTE: 3 corresponds to the best level of compatibility 0 corresponds to incompatibility Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis) A1A2A3C1C2C3A1A2A3C1C2C3 C 1 C 2 C 3 B 1 B 3 B 4 B NOTE: 3 corresponds to the best level of compatibility 0 corresponds to incompatibility Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis) Examples for building : S i = A 1 * (E 1 * G 1 * H 1 ) * (I 3 * J 1 ) * C 1 estimate 2 (Pareto-layer) S ii = A 2 * (E 2 * G 2 * H 2 ) * (I 3 * J 1 ) * C 1 estimate 2 (Pareto-layer) S iii = A 1 * (E 2 * G 2 * H 2 ) * (I 3 * J 1 ) * C 3 estimate 3 S iv = A 2 * (E 2 * G 2 * H 2 ) * (I 3 * J 1 ) * C 3 estimate 3 S v = A 1 * (E 2 * G 1 * H 1 ) * (I 3 * J 3 ) * C 3 estimate 4

Improvement (upgrade) of building Operation group I (frames): O 1 increasing a geometrical dimension and active reinforcement O 2 increasing of active reinforcement Operation group II (joints): O 3 increasing a level for fixing a longitudinal active reinforcement in zone of joints O 4 decreasing the step of reinforced cross rods in zone of joint Operation group III (cantilever and cantilever balcony): O 5 decreasing the projection cantilever O 6 supplementary supporting the cantilever Operation group IV (fronton and parapet wall): O 7 fixing a bottom part O 8 designing a 3D structure (special) Operation group V (connection between frame and filler walls): O 9 design of shear keys O 10 design of mesh reinforcement O 11 partition of filler walls by auxiliary frame

Improvement (upgrade) of building Binary relation equivalence and nonequivalence Binary relation complementarity and noncomplementarity Binary relation precedence BINARY RELATIONS OVER IMPROVEMENT OPERATIONS Group 1. Improvement of earthquake resistance Group 2. Quality of architecture and plan decisions Group 4. Utilization properties Group 4. Expenditure CRITERIA FOR IMPROVEMENT OPERATIONS

Improvement (upgrade) of building Model 1: Knapsack Model 2: Multiple choice problem Model 3: Multiple criteria ranking Model 4: Morphological clique problem Model 5: Scheduling ETC. COMBINATORIAL MODELS FOR PLANNING OF IMPROVEMENT

Combinatorial synthesis for planning of redesign (improvement, upgrade) Improvement : S = A*B*(C*D)*E A C B D E O 1 (3) O 2 (1) O 1 &O 2 (4) None O 3 (32) O 4 (1) O 3 &O 4 (2) None O 9 (3) O 10 (2) O 11 (3) None O 7 (3) O 8 (2) None O 5 (3) O 6 (4) None Strategy: O 2 => O 4 => O 5 &O 7 (4) => O 10