ЛЕКЦИЯ 5. Биотрансформация чужеродных соединений в организме. Этапы и основные пути биотрансформации. Факторы, влияющие на метаболизм чужеродных соединений.

Презентация:



Advertisements
Похожие презентации
Ксенобиотики Микросомальное окисление Автор – доцент Е.А. Рыскина.
Advertisements

БИОХИМИЯ ПЕЧЕНИ. portal vein hepatic artery bile duct sinusoids bile canaliculi central vein СТРОЕНИЕ ПЕЧЕНИ.
БИОХИМИЯ ПЕЧЕНИ. portal vein hepatic artery bile duct sinusoids bile canaliculi central vein СТРОЕНИЕ ПЕЧЕНИ.
Лекция Биохимия печени. Масса печени у взрослого человека составляет в среднем 1,5 кг, потребляет до % кислорода. Химический состав меняется в зависимости.
Углеводороды Алканы Алкены Алкины Алкадиены вещества, состоящие только из атомов C и H углеводороды, у которых все связи одинарные углеводороды, в которых.
ФерментыФЕРМЕНТЫ (энзимы) - это высокоспецифичные белки, выполняющие функции биологических катализаторов. Катализатор - это вещество, которое ускоряет.
Биологическое окисление. Это система ОВР идущих при участии ферментов, которые являются источником энергии в тканях. Сходство его с горением - идет с.
«Окислительные процессы принадлежат к разряду тех процессов живого организма, которые не только больше всего бросаются в глаза, но и оказываются самыми.
Тканевое дыхание.
Физическая химия биополимеров Лаврик О.И.. 1. Структурная организация активного центра ферментов. Строение активных центров ферментов на примерах карбоксипептидазы,
Ферменты выполняют и множество других функций. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов.
Разработал: Перфильева Г.В. Красноярск, 2013 ГБОУ ВПО КрасГМУ имени профессора В.Ф. Войно – Ясенецкого Минздрав РФ Фармацевтический колледж Лекция 16.
Тема: Энергетический обмен. Анаэробный гликолиз Задачи: Дать характеристику различным формам биологического окисления, разобрать анаэробный путь окисления.
Дисциплина : биохимия ( С 2. Б.4) Специальность : педиатрия ( ) НГМУ, кафедра медицинской химии Д. б. н., доцент Суменкова Дина Валерьевна Лекции.
Окислительно- восстановительные реакции в органической химии По материалам статьи Г.Н.Молчановой в журнале «Химия для школьников» Составитель: Снастина.
Участие цитохрома p-450 в окислении ксенобиотиков и природных субстратов. Субстраты I и II типов Зоткин Никита Николаевич.
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ биологический факультет кафедра биохимии Исследование окислительной модификации флаволигнанов микросомальной и.
Повторительно – обобщающий урок на тему : «Белки» Задача выполнена, если химическая сторона мира вошла в круг наших понятий.
Волнуемся Успокоимся Подготовила учитель химии МБОУ «Хормалинская СОШ» Ибресинского района Иванова Валентина Васильевна.
Спирты Предельные одноатомные спирты. Общая характеристика Общая формула гомологического ряда предельных одноатомных спиртов C n H 2n+1 OH. В зависимости.
Транксрипт:

ЛЕКЦИЯ 5. Биотрансформация чужеродных соединений в организме. Этапы и основные пути биотрансформации. Факторы, влияющие на метаболизм чужеродных соединений. Метаболиты и токсичность. Представление о вторичном метаболизме. Экскреция чужеродных соединений и их метаболитов. Биотрансформация метаболическое превращение эндогенных и экзогенных химических веществ в более полярные (гидрофильные) соединения. Фазы биотрансформации Реакции 1-й фазы Реакции 2-й фазы (реакции синтеза) -гидролиз, -восстановление, -окисление. -глюкуронирование, -сульфатирование, -ацетилирование, -метилирование, -конъюгация (соединение) с: а) глутатионом (синтез меркаптуровой кислоты) б) аминокислотами (глицином, таурином и глутаминовой кислотой).

Основные пути биотрансформации чужеродных соединений. 1. Окисление: а) микросомальное – алифатичекое или ароматическое гидроксилирование, – эпоксидирование, – N-гидроксилирование, – N, S-окисление, – дезалкилирование, – дезаминирование, – десульфирование; б) немикросомальное – окислительное дезаминирование, – окисление спиртов, альдегидов, – ароматизация алициклических соединений. 2. Восстановление: а) восстановление нитросоединений, азотсоединений микросомальными ферментами; б) микросомальное восстановительное галогенирование; в) немикросоальное восстановление. 3. Гидролиз с участием микросомальных и немикросомальных ферментов. 4. Синтез (реакции коньюгирования): а) образование коньюгатов с глюкуроновой кислотой; б) образование сложных эфиров с серной и фосфорной кислотами; в) метилирование; г) ацетилирование; д) пептидная коньюгация.

Биотрансформация ксенобиотиков осуществляется преимущественно в печени Ферменты биотрансформации ксенобиотиков присутствуют в основном в микросомах и в цитозоле и незначительная часть – в митохондриях, ядре и лизосомах

Ферментативные реакции 1-й фазы биотрансформации ксенобиотиков карбоксилэстераза, ацетилхолинэстераза псевдохолинэстераза эпоксидная гидролаза 1. Гидролиз при биотрансформации X = OR, SR, Cl, NR 2 параоксаназа амидная связь между аминокислотами в пептидах, рекомбинантных пептидных гормонах, факторах роста, цитокинах, растворимых рецепторов и моноклональных антител. эфиры карбоновых кислот, амидов и тиоэфиров эфиры фосфорной кислоты пептидазы присоединение воды к эпоксидам алкенов и оксидам аренов l фаза метаболизма - этап биотрансформации, в ходе которого к молекуле соединения либо присоединяются полярные функциональные группы, либо осуществляется экспрессия таких групп, находящихся в субстрате в скрытой форме

2. Восстановление при биотрансформации Некоторые металлы альдегиды, кетоны, дисульфиды, сульфоксиды, хиноны, алкены, азо- и нитросоединеня Коферменты никотинамидадениндинуклеотид (НАД + /НАДН, НАДФ + /НАДФН) флавинадениндинуклеотид (ФАД/ФАДН 2 ). Восстановление азо- и нитросоединений - цитохром Р450 НАДФН-хинон оксидоредуктазы реакция ингибируются кислородом

Восстановление карбонильных соединений - алкогольдегидрогеназа группа ферментов карбонильные редуктазы Восстановление дисульфидов - глутатионредуктаза, глутатион - S-трансфераза неферментативно

Восстановление сульфоксидов -цитохром Р450 и НАДФН Восстановление хинонов - +2e, +2H + НАДФН-хиноноксидоредуктаза, флавопротеины цитозоля в отсутствие кислорода микросомальная НАДФН-цитохром Р450 редуктазой

Дегалогенирование: окислительное дегалогенирование двойное дегалогенирование дегидрогалогенирование ХЛОРОФОРМ ФОСГЕН CHCl 3 ClCOCl +HCl

3. Окисление при биотрансформации Алкогольдегидрогеназа (АДГ) цитозольный фермент Класс I АДГ-изоферментов ( -АДГ, β- АДГ и γ - АДГ) – окисление этанола и других алифатических спиртов небольших размеров. Класс II АДГ (π-АДГ) (в печени) - окисление более крупных алифатических и ароматических спиртов. Класса III АДГ (χ-АДГ) - длинноцепочечные алифатические спирты (начиная от пентанола) и ароматические спирты. Класс IV АДГ (σ- или μ-АДГ) окислении ретинола.

Альдегид-дегидрогеназа (АЛДГ) - окислении альдегидов до карбоновых кислот (кофактор НАД + ). Дигидродиолдегидрогеназа - окисление полициклических ароматических углеводородов. Молибденовые гидроксилазы – альдегидоксидаза и ксантиндегидрогеназа / ксантиноксидаза, сульфитоксидаза - окисляет токсичный сульфит до относительно безопасного сульфата. Ксантиндегидрогеназа (XD) и ксантиноксидаза (ХО) участвуют в процессах, связанных с оксидативным стрессом, пероксидном окислении липидов. Альдегидоксидаза - пероксидное окисление липидов, катаболизм биогенных аминов и катехоламинов.

Пероксидаза-зависимое окисление превращение ксенобиотиков в токсичные метаболиты прямой перенос пероксидного кислорода к ксенобиотику Тох ТохО амины или фенолы окисляются пероксидом водорода в присутствии пероксидаз с образованием свободных радикалов Флавинмонооксигеназа - окисляет нуклеофильный азот, серу и фосфор в молекулах ксенобиотиков Моноаминоксидаза - окислительное дезаминировании первичных, вторичных и третичных аминов, включая серотонин.

Цитохром Р450 катализирует реакции окисления: - гидроксилирование алифатических и ароматических углеводородов; -эпоксидирование двойной связи; -окисление гетероатомов (О-, S-, N-, Si-) -N-гидроксилирование; -деалкилирование гетероатомов (О-, S-, N-, Si-), -окислительный перенос группы; -разрыв сложноэфирной связи; -дегидрирование. НАДФННАДФ

Рисунок. Упрощенная схема превращения субстрата при участии Р-450

Эпоксидирование и гидроксилирование ароматических соединений Эпоксидирование алифатических и алициклических соединений

N-окисление. Оксилительное деалкилирование Окисление тиоэфиров.

Ферментативные реакции 2-й фазы биотрансформации Фаза ll метаболизма - этап биологической конъюгации промежуточных продуктов метаболизма с эндогенными молекулами, такими как глутатион, глюкуроновая кислота, сульфат и т.д. Глюкуронирование, сульфатирование, ацетилирование и метилирование протекают с участием высокоэнергетических косубстратов. Конъюгация (соединение) с аминокислотами или глутатионом проходит с участием активированных молекул ксенобиотиков. Большинство ферментов 2-й фазы биотрансформации локализованы в цитозоле. 1. Глюкуронирование Уридин-5 -дифосфо- -D-глюкуроновая кислота глюкуроновая кислота Фермент- УДФ-глюкуронозилтрансфераза

2. Сульфатирование 3 -фосфоаденозин-5 -фосфосульфат ФАФСФАФ Фермент - сульфотрансфераза

3. Метилирование 4. Ацетилирование S-аденозилметионин Ацетил коэнзим А КоААЦКоА-АЦ

5. Конъюгация с аминокислотами глицинтауринглутамин

6. Конъюгация с глутатионом глутатион

Факторы, влияющие на метаболизм чужеродных соединений. 1.Генетические факторы и внутривидовые различия (возможны генетические дефекты ферментов, их изучением занимается фармакогенетика). 2. Физиологические: -возраст и развитие ферментных систем; -половые различия; -гормональный фон; -беременность; -питание; -патологические состояния, заболевания; -длительное применение лекарств. 3. Факторы окружающей среды: -стресс; -ионизирующая радиация; -стимулирование метаболизма чужеродными соединениями; -ингибирование метаболизма чужеродными соединениями. Вторичный метаболизм - посмертные метаболические процессы