ПАМЯТЬ. Нейрофизиологические основы.. Изучение больных с амнезией, а также открытие длительной потенциации (удобной экспериментальной модели памяти) в.

Презентация:



Advertisements
Похожие презентации
Физиология высшей нервной деятельности Память
Advertisements

Физиология высшей нервной деятельности Физиологические механизмы условного рефлекса
ПАМЯТЬ. Модели и механизмы.. Память это способность живой системы фиксировать факт взаимодействия со средой (внешней или внутренней), сохранять результат.
Лимбическая система имеет вид кольца и расположена на границе новой коры и ствола мозга. В функциональном отношении под лимбической системой понимают объединение.
ПАМЯТЬ. Модели и механизмы.. Память это способность живой системы фиксировать факт взаимодействия со средой (внешней или внутренней), сохранять результат.
Память.Механизмы и виды памяти.. Память одна из психических функций и видов умственной деятельности, предназначенная сохранять, накапливать и воспроизводить.
Физиология высшей нервной деятельности Механизмы условного рефлекса и пластичности 2009.
Самостоятельная работа по предмету: «Физиология центральной нервной системы» Выполнил: студент гр. П1-11 =))
Чем, бы мы ни занимались, наша нервная система незримо участвует в каждом нашем, действии. Это - самая сложная и важнейшая сеть управления и связи в организме.
Классификация памяти Классификация памяти производится на основе следующих критериев: по длительности хранения информации, в зависимости от типа информации,
Функциональные блоки мозга (А.Р.Лурия). Первый блок (энергетический) Анатомическая основа: ретикулярная формация ствола мозга ( клеточная функциональная.
Цель работы: Узнать зачем в одном и том же организме существует несколько медиаторов, если одного было бы достаточно для проведения нервного импульса.
МОЗГ и его строение. Нервная система человека Физиологическая основа протекания всех психических процессов. Очень сложное устройство, которое состоит.
Научение Выполнила студентка НИЭПП факультета психологии группы П-83 Коровина Анастасия Александровна.
Занятие 5 Исследовать - значит видеть то, что все видели, а думать так, как не думал никто. Р. Докинз.
Сенсорные зоны - это функциональные зоны коры головного мозга, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов.
Физиология больших полушарий головного мозга и мозжечка.
Строение нейрона. Синапс.. Что такое нейрон? Нейрон это структурно- функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко.
Тема урока: ТРИГГЕР. или не не Разнообразие современных компьютеров очень велико. Но их структуры основаны на общих логических принципах, позволяющих.
Левая лобная доля отвечает за качества, определяющие личность человека : внимание, абстрактное мышление, стремление к инициативе, способность к решению.
Транксрипт:

ПАМЯТЬ. Нейрофизиологические основы.

Изучение больных с амнезией, а также открытие длительной потенциации (удобной экспериментальной модели памяти) в гиппокампе привело к ошибочной точке зрения, что гиппокамп и является местом хранения памяти. На самом деле, видимо, гиппокамп необходим для кодирования и консолидации декларативной памяти, а также, возможно, ее воспроизведения, однако сама по себе долговременная память хранится преимущественно не в гиппокампе. Префронталь- ная кора Миндалина Гиппокамп Таламус Передний рог Мамиллярное тело Области мозга, повреждения которых приводят к нарушениям декларативной памяти Вид снизу

«Считается, что долговременная память связана с ассоциативной корой. В адресации памятных следов в определенные участки коры важную роль играют медиальные отделы височной области полушарий, включающие энторинальную кору и гиппокамп … Вышеназванные образования имеют обширные связи как между собой, так и с проекционными (теми, куда приходят сигналы от органов чувств) и ассоциативными отделами коры. При запоминании они направляют сигнал в ассоциативную кору для длительного удержания в памяти, а при необходимости вспомнить - указывают адрес, где хранится связанная с поступившим сигналом информация. Приведем простой пример. Долговременная память соответствует книгохранилищу в библиотеке, а гиппокампальный комплекс можно сравнить с каталогом, который показывает, где хранится нужная книга.» А.М.Иваницкий Современная точка зрения:

Связи между гиппокампом и возможными местами хранения декларативной памяти. Показан мозг макаки резуса, поскольку данные соединения лучше подтверждены у приматов, чем у людей. Проекции от многочисленных корковых областей объединяются в гиппокампе, известно, что имеющие к ним отношение структуры мозга у человека вовлечены в процессы памяти, большинство этих областей также посылает проекции на те же корковые участки. Показаны медиальный («из середины») и латеральный («сбоку») вид мозга, последний повернут на 180 ° для ясности. Медиальный видЛатеральный вид Гиппокамп

Декларативная память хранится во всех специализированных ассоциативных областях коры больших полушарий. Согласно данным томографических исследований на людях, при воспоминании изображений или звуков активируются те же самые области коры, что и при их восприятии соответствующих стимулов. (см. след. рис.)

Реактивация зрительной коры во время визуального запоминания картинки. (A) Дана инструкция либо смотреть на объекты (слева), либо представлять объекты без визуального стимула (справа). (B) (Слева) Билатеральные участки вентральной височной коры специфически активированы при предъявлении разных зрительных стимулов: домов (желтым), лиц (красным), стульев (синим). (Справа) Когда испытуемые вспоминали эти объекты, то преимущественно реактивировались те участки мозга, которые были активны при рассмотрении объектов этой же категории.

Процедурная память также широко распределена по всей коре больших полушарий, и связана преимущественно с сенсорными и моторными областями коры, а также с мозжечком. Но как формируются следы памяти?

Дональд Хебб (Donald O. Hebb) Клеточные механизмы памяти

A B B A Правило Хебба (1949 г.): «Если аксон клетки А расположен настолько близко к клетке В, что может возбуждать ее, и если он многократно и непрерывно принимает участие в ее активации, то в одной или обеих клетках возникают какой-то процесс роста или метаболические изменения, и в результате эффективность клетки А как одного из активаторов клетки В возрастает». Примечание: подразумевается, что клетка B может быть активирована каким-то другим способом, помимо синапса с клетки A – т.е. либо имеются и другие входы на клетку B, причем сильные, либо клетка B спонтанно активна.

Синапс Хебба и условный рефлекс УС БС БР или УР Исходно слабая синаптическая связь, которая усиливается при совпадении во времени пресинаптической и постсинаптической активности (синапс Хебба) Исходно сильная синаптическая связь

Утолщение и укорочение шейки шипика, что снижает его электрическое сопротивление Больше постсинаптических рецепторов, сильнее реакция на нейромедиатор Дендритный шипик Выделение большего количества нейромедиатора Спраутинг: образование новой дополнительной терминали Четыре возможных способа повышения эффективности синапса

Эксперимент на переживающем срезе гиппокампа Модель краткосрочной памяти: долговременная потенциация в гиппокампе

Ассоциативная длительная потенциация Поле CA3 Поле CA1 Зубчатая фасция Энторинальная кора Слабый стимул W1 Слабый стимул W2 Сильный стимул S Регистрация ВПСП Усиление ВПСП, % Сочетание W1 c S Сочетание W2 c S Долговременная потенциация в гиппокампе как клеточная модель условного рефлекса

Вероятно, кратковременная память, как и долговременная, хранится непосредственно в тех же структурах, которые отвечают за данную функцию.

При кратковременной памяти синаптические изменения носят нестойкий характер, поэтому эта память сохраняется лишь пока существует соответствующая нервная активность. Нервная активность может поддерживаться за счет так называемой реверберации (многократного повторного прохождения сигнала по цепочкам нервных клеток) или каких-то сходных более сложных процессов циркуляции сигнала в нейронных сетях. Любое изменение нервной активности (например, при поступлении новых сигналов, а также любое травматическое воздействие) ведет к разрушению кратковременной памяти. Явления ретроградной амнезии наблюдались в экспериментах с животными, которым электрошок наносился сразу после обучения, но он был неэффективен, если наносился спустя некоторое время после процедуры обучения. При сильном сотрясении мозга человек не может вспомнить обстоятельства своей травмы (ретроградная амнезия), так как воздействие удара на мозг разрушило кратковременную память, не дав ей перейти в долговременную.

«Нейронная ловушка» Вертикальный модуль – корковый конец таламокортикальной петли Пример реверберирующей «петли» Структурной основой реверберации импульсов могут являться «нейронные ловушки», распространённые в лобных областях коры, и таламо-кортикальные петли, представленные в теменных и височных областях.

Реакции нейронов префронтальной коры в эксперименте с отсроченным ответом. Когда обезьяна фиксирует взор на центральном пятне, на экране (слева) вспыхивает и затем исчезает цель. Во время длящейся несколько секунд отсрочки обезьяна хранит об этой цели «мысленную» память (в центре). Когда центральное пятно исчезает, животное переводит взгляд туда, где появлялась цель (справа). Некоторые нейроны префронтальной коры реагируют на появление цели, другие сохраняют о ней «мысленную» память, а третьи разряжаются, подготавливая двигательный ответ. (Гольдман-Ракич, 1992)

В основе процессов кратковременной памяти лежит временное повышение проводимости в синапсах, связывающих определенные нейроны, и реверберация импульсов, основанная на ряде химических и электрохимических реакций, не связанных с синтезом макромолекул.

Широкое распространение получила гипотеза, которая была впервые сформулирована Д. Хеббом (1949): кратковременная память представлена динамической, легко прерываемой электрической активностью, тогда как долговременная память связана с более стойкими структурными изменениями (например, белков мозга). Этот процесс в дальнейшем получил название консолидации следов памяти. Переход краткосрочной памяти в долгосрочную

В экспериментах на животных было показано, что обязательным требованием для консолидации следа памяти является синтез белка и рибонуклеиновых кислот (РНК) во время периода консолидации. Блокада хотя бы одного из этих процессов в течение первого часа после обучения приводила к полному разрушению памяти, однако в более позднее время блокада синтеза белка и РНК уже не влияет на образование долговременной памяти. В результате в конце 60-х – начале 70-х гг. распространилась ошибочная точка зрения, что консолидация представляет собой запись памяти в некотором коде непосредственно в молекулах РНК и/или белка.

На самом деле последовательность событий примерно такая: 1. Кратковременные нестойкие изменения в синапсах возникают согласно правилу Хебба. 2. При условии того, что клетка продолжает быть активной и в тело клетки входят ионы кальция, в ядре запускается сложный каскад процессов ( с участием белкового комплекса CREB ), который в конечном счете ведет к синтезу определенных белков. 3. Эти белки распространяются в цитоплазме клетки повсюду, но способны встроиться лишь в те синапсы, которые в данный момент несут кратковременные изменения. 4. Встраивание этих синтезированных белков в измененные синапсы позволяет превратить нестойкие изменения в устойчивые. 5. Блокада любого звена этой цепочки процессов не дает кратковременной памяти перейти в долговременную.

Модель консолидации памяти на клеточном уровне

Тест

Напишите первое пришедшее вам в голову подходящее слово (например, _ у _ а => рука)

_ о _ к а

к _ _ _ а н

_ о _ н о _

_ е _ р о

КАРМАН ВЕДРО ГЕКТАР ГЛОБУС ДОСКА БЛОКНОТ

Память: итоги. 1. Память это способность живой системы фиксировать факт взаимодействия со средой, сохранять результат этого взаимодействия и использовать его в поведении. 2. Кратковременная память обеспечивается реверберацией импульсов в нейронных сетях. Долговременная – облегчением проводимости в этих сетях. То есть, кратко- и долговременной памяти соответствуют не разные структуры (как предполагает «компьютерная метафора»), а разные процессы/состояния в одних и тех же структурах. 3. «Следы памяти» сохраняются в тех же областях мозга, что отвечают за восприятие (эпизодическая память), семантическую обработку информации (семантическая память) и управление движениями (процедурная память) ( «память встроена в процессор» ). Адресация «следов памяти» по всей видимости осуществляется гиппокампом. 4. Осмысленность информации существенно влияет на эффективность её запоминания. При этом первичная смысловая обработка происходит ещё на неосознаваемой стадии.

Этапы формирования памяти ( по Д.Хеббу, 1949 ): 1. Кратковременная память – неустойчивый след памяти. Для кратковременной памяти характерен ограниченный объем информации (7±2 единицы), быстрое угасание и разрушаемость под воздействием большого числа факторов 2. Долговременная память – устойчивый след памяти Процесс перехода кратковременной памяти в долговременную называется консолидацией. Примечание: кратковременная память не эквивалентна рабочей (оперативной памяти)!

1. Рабочая память - сохранение информации в пределах одного опыта (какие рукава лабиринта были посещены в данном опыте); хранение информации, необходимой для решения конкретной текущей задачи 2. Референтная память (=семантическая память?) сохранение информации об общей структуре лабиринта в целом. Виды памяти, определяемые в экспериментах с радиальными лабиринтами, созданных для изучения пространственной памяти, а также во многих других задачах:

Когда молекула глутамата связывается с NMDA- рецептором, кальциевые каналы не могут открыться, поскольку заблокированы ионами магния NMDA - рецептор Молекула глутамата Деполяризация мембраны как следствие развития возбуждающего постсинаптического потенциала (ВПСП) в данном или соседних синапсах заставляет ионы магния покинуть кальциевые каналы Когда теперь молекула глутамата связывается с NMDA-рецептором, канал открывается и кальций беспрепятственно входит внутрь клетки. В цитоплазме клетки вошедшие ионы кальция запускают каскад процессов, обеспечивающих длительную потенциацию Молекулярные процессы, лежащие в основе долговременной потенциации

Схема эксперимента по получению длительной потенциации в гиппокампе Поле CA3 Зубчатая фасция Регистрация из зубчатой фасции Стимуляция перфорантного пути Энторинальная кора Поле CA1

Пример ДП в перфорантном пути, записанной in vivo.

В гиппокампе есть три главных синаптических пути, каждый из которых способен к долговременной потенциации

Строение гиппокампа Гиппокамп Коллатерали Шаффера Зубчатая фасция Перфорантный путь

Согласно наблюдениям над пациентами с амнезией и экспериментам над животными, гиппокамп имеет большее значение для эпизодической памяти (которая всегда связана с контекстом, в котором произошел эпизод), а парагиппокампальная область ( энторинальная, периринальная и парагиппакампальная области коры ) связана с семантической памятью («чистое знание»).