Презентация к уроку по алгебре (9 класс) по теме: Арифметическая прогрессия

Презентация:



Advertisements
Похожие презентации
ПРОГРЕССИЯ Работу выполнила Кудрявцева Оксана. Первые представления об арифметической и геометрической прогрессиях были ещё у древних народов. В клинописных.
Advertisements

Прогрессии Немного истории Учитель МОУ СОШ 3 г. Тарко - Сале И. А. Павлова.
Сумма n первых членов геометрической прогрессии..
Формула суммы первых n членов арифметической прогрессии Формула суммы первых n членов арифметической прогрессии
Арифметическая и геометрическая прогрессии (обобщающий урок)
Арифметическая и геометрическая прогрессии Урок алгебры, 9 класс Автор: Михнева Лидия Ивановна учитель математики МОУ СОШ 5 г. Новоалександровск.
Изучена данная тема, Пройдена теории схема, Вы много новых формул узнали, Задачи с прогрессией решали. И вот в последний урок Нас поведет Красивый лозунг.
Общеобразовательное учреждение средняя общеобразовательная школа 23 г. Сызрани Самарской области Учитель: Башканова Учитель: Башканова Нина Нина Владимировна.
Устная работа 1. В последовательности (х n ): 9; 7; 5; 3; 1; - 1; -3; … назовите первый, четвёртый, шестой и седьмой члены.
Урок по теме: «Арифметическая и геометрическая прогрессии».
Задание 1. Укажите 7-ой член последовательности: а n: 6;10;14;18;22;26… b n: 49;25;81;4;121;64… с n: 22;17;12;7;2;-3… х n: -3,8;-2,6;-1,4;-0,2;1;2,2… у.
Основные понятия Определение. арифметической прогрессией разностью прогрессии. Определение. Числовую последовательность, каждый член которой, начиная.
Тема урока : Сумма n- первых членов арифметической прогрессии.
Арифметическая и геометрическая прогрессия Закончился двадцатый век. Куда стремится человек? Изучены космос и море, Строенье звёзд и вся земля. Но математиков.
Формула суммы п - первых членов арифметической прогрессии.
Урок алгебры в 9 классе Считать несчастным тот день или тот час, в который ты не усвоил ничего нового, ничего не прибавил к своему образованию. Ян Амос.
Работу выполнила учитель математики Соколова О. Н.
Тема урока: Определение арифметической прогрессии. Формула п- го члена арифметической прогрессии.
Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо.
Арифметическая прогрессия.. Какие из последовательностей являются арифметическими прогрессиями? 3, 6, 9, 12,….. 5, 12, 18, 24, 30,….. 7, 14,
Транксрипт:

Определение. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. a n + 1 = a n + d, n є N

Число d называют разностью арифметической прогрессии d = a n+1 - a n Если разность между последующим и предыдущим членами последовательности есть одно и то же число, то это арифметическая прогрессия. Разумеется, при этом предполагается, что обнаруженная закономерность справедлива не только для явно выписанных членов последовательности, но и для всей последовательности в целом. Арифметическая прогрессия считается конечной, если рассматриваются только ее первые несколько членов. Арифметическая прогрессия является: возрастающей последовательностью, если d > 0, например, 1, 3, 5, 7, 9,11,... убывающей, если d < 0, например, 20,17, 14, 11, 8, 5, 2, -1, -4,...

Свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Верно и обратное утверждение: если в последовательности (an) каждый член начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией.

Формулы суммы n первых членов арифметической прогрессии

Первое представление о арифметических прогрессиях были ещё у древних народов. В клинописных вавилонских табличках и египетских папирусах встречаются задачи на прогрессии и указания, как их решать. В древнеегипетском папирусе Ахмеса (ок.2000 г. до н.э.) приводится такая задача: «Пусть тебе сказано: раздели десять мер ячменя между 10 людьми так, чтобы разность мер ячменя, полученного каждым человеком и его соседом, равнялось одна восьмая меры». В этой задачи речь идёт об арифметической прогрессии. Условие задачи, пользуясь современными обозначениями, можно записать так: S 10 = 10, d = 1/8, найти a 1, a 2, a 3.

О прогрессиях и их суммах знали древнегреческие учёные. Так, им были известны формулы суммы n чисел последовательности натуральных, чётных и нечётных чисел. Отдельные факты об арифметической прогрессии знали китайские и индийские учёные. Об этом говорит, например известная индийская легенда об изобретателе шахмат.

Термин «прогрессия» (от латинского progressio, что означает «движение вперёд») был введён римским автором Боэцием ( VI век) и понимался в более широком смысле, как бесконечная числовая последовательность. Названия «арифметическая» и «геометрическая» были перенесены на прогрессии из теории непрерывных пропорций, изучением которых занимались древние греки.

Формула суммы членов арифметической прогрессии была доказана в книге Евклида « Начала» (IIIв. до н.э.). Правило отыскания суммы членов арифметической прогрессии встречается в « Книге абака» Л. Фибоначчи (1202).

С арифметической прогрессией связан интересный эпизод из жизни немецкого математика К.Ф. Гаусса (1777 – 1855). Когда ему было 9 лет, учитель занятый проверкой работ учеников других классов, задал на уроке следующую задачу: « Сосчитать сумму всех натуральных чисел от 1 до 40 включительно: …+40». Каково же было удивление учителя, когда один из учеников (это был Гаусс)через минуту воскликнул: « Я уже решил». Большинство учеников после долгих подсчётов получили неверный результат. В тетради Гаусса было одно число, но зато верное.

Арифметические прогрессии и их свойства изучались математиками с древних времён. Греческих математиков интересовала связь прогрессий с так называемыми многоугольными числами, вычислением площадей, объемов. Большой популярностью даже в наши дни пользуются магические квадраты. Эти квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны. Такой магический квадрат изображён в гравюре немецкого художника А. Дюрера «Меланхолия».

Презентацию выполнили: Рябова Кристина 11А класс Клишина Марина 9А класс Крощук Иван 9А класс Крощук Геннадий 9А класс Руководитель: Рябова Лилия Геннадьевна МОУ «Быстроистокская общеобразовательная средняя (полная) школа»