ВОДОРОД (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1,00794. Физические свойства: при обычных условиях водород легкий.

Презентация:



Advertisements
Похожие презентации
Презентация на тему: «Щелочные Металлы IА группы. Литий» Сделали: ученицы 9 «б» класса Кузнецова Юля и Логинова Настя.
Advertisements

Общие сведения Водород в природе Строение атома Физические свойства Получение Химические свойства Применение.
Водород - первый химический элемент периодической системы химических элементов Д. И. Менделеева. Атомный номер водорода 1, относительная атомная масса.
«Фтор». Презентация по химии. Ученицы 9 класса Горловой Натальи.
Натрий Металлы группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло - и электропроводность,
Положение металлов в периодической системе Металлы в природе Особенности строения Физические свойства Химические свойства Способы получения Коррозия металлов.
Металлы Натрий. План характеристики вещества Натрий-элемент 1 группы 3 периода периодической системы элементов Д.И.Менделеева, щелочной металл. Натрий-элемент.
Мета́ллы (от лат. metallum шахта, рудник) группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие.
Титан Металл XXI века Металл XXI века. Положение титана в периодической системе химических элементов и строение атома. Титан элемент главной подгруппы.
I. ЖЕЛЕЗО КАК ХИМИЧЕСКИЙ ЭЛЕМЕНТ. II. НАХОЖДЕНИЕ В ПРИРОДЕ И ПРИМЕНЕНИЕ ЖЕЛЕЗА III. ФИЗИЧЕСКИЕ СВОЙСТВА. IV. ХИМИЧЕСКИЕ СВОЙСТВА.
Титан - Металл XXI века.
Азот. Азот в природе. АЗОТ В ПРИРОДЕ АТМОСФЕРНЫЙ N 2 ; NO 2 В СОСТАВЕ ЖИВЫХ БЕЛКОВ ОРГАНИЗМОВ, В МИНЕРАЛАХ И ПОЧВЕ ВАЖНЕЙШИЕ АЗОТНЫЕ УДОБРЕНИЯ АММОФОС.
Неорганические вещества, входящие в состав клетки.
Химический элемент побочной подгруппы 1 группы – Cu (Медь) Работу выполнили: ученики 11 класса Арабосинской СОШ Иванов Константин И Гаврилов Сергей. Работу.
Сера и ее свойства Химические свойства. Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень.
Лекция 2. НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА Содержание химических элементов в организме. 2. Вода и её роль в живых организмах. 3. Минеральные соли и кислоты.
КАЛЬЦИЙ Ca ПЛАН: 1. КАЛЬЦИЙ – КАК ХИМИЧЕСКИЙ ЭЛЕМЕНТ 2. НЕМНОГО ОБ ИСТОРИИ… 3. РАСПРОСТРАНЕННОСТЬ В ПРИРОДЕ. 4. ФИЗИЧЕСКИЕ СВОЙСТВА.. 5. ХИМИЧЕСКИЕ СВОЙСТВА.
Лантан. La - химический элемент побочной подгруппы III группы 6 периода периодической системы Атомный номер 57 Атомная масса 138,9055 Плотность, г/cм³.
Азот Азот (от греч. azoos - безжизненный, лат. Nitrogenium), N, химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная.
Натрий и калий (видеозаписи не работают)
Транксрипт:

ВОДОРОД (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1, Физические свойства: при обычных условиях водород легкий (плотность при нормальных условиях 0,0899 кг/м 3) бесцветный газ. Температура плавления –259,15°C, температура кипения –252,7°C. Жидкий водород (при температуре кипения) обладает плотностью 70,8 кг/м 3 и является самой легкой жидкостью. История открытия: выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш в 1766 исследовал этот газ и назвал его «горючим воздухом». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году. На рубеже 18 и 19 века было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1. Нахождение в природе: на долю водорода приходится около 1% массы земной коры (10-е место среди всех элементов). В свободном виде водород на нашей планете практически не встречается (его следы имеются в верхних слоях атмосферы), но в составе воды распространен на Земле почти повсеместно. Элемент водород входит в состав органических и неорганических соединений живых организмов, природного газа, нефти, каменного угля. Водород как элемент доминирует во Вселенной. На его долю приходится около половины массы Солнца и других звезд, он присутствует в атмосфере ряда планет. См. дальше

Применение: водород используют при синтезе аммиака NH3, хлороводорода HCl, метанола СН3ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием природных растительных масел получают твердый жир маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода (O) с водородом используют при сварке. Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). Биологическая роль: биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении «узнавания» на молекулярном уровне. Водород (ион Н+) принимает участие в важнейших динамических процессах и реакциях в организме в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза, в процессах мембранного транспорта. Таким образом, наряду с кислородом (O) и углеродом (C) водород образует структурную и функциональную основы явлений жизни. См.дал

Определяется тремя базовыми векторами, два из которых равны и угол между ними 60°, а третий им перпендикулярен. В гексагональной сингонии три элементарных ячейки образуют правильную призму на шестигранном основании.

ЛИТИЙ (лат. Lithium), Li, химический элемент с атомным номером 3, атомная масса 6,941. Химический символ Li читается так же, как и название самого элемента. Физические свойства: из металлов литий самый легкий, его плотность 0,534 г/см 3. Температура плавления 180,5°C, температура кипения 1326°C. При температурах от –193°C до температуры плавления устойчива кубическая объемно центрированная модификация лития с параметром элементарной ячейки а = 0,350 нм. История открытия: литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите KLi1.5Al1.5[Si3AlO10](F,OH)2. Свое название получил из-за того, что был обнаружен в «камнях» (греч. Litos камень). Характерное для соединений лития красное окрашивание пламени впервые наблюдал немецкий химик Х. Г. Гмелин в 1818 году. В этом же году английский химик Г. Дэви электролизом расплава гидроксида лития получил кусочек металла. Получить свободный металл в достаточных количествах удалось впервые только в 1855 году путем электролиза расплавленного хлорида: Получение: в настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси). В дальнейшем полученный литий очищают методом вакуумной дистилляции. СМ.дальше

Нахождение в природе: литий довольно широко распространен в земной коре, его содержание в ней составляет 6,5·10–3% по массе. Как уже упоминалось, основные минералы, содержащие литий, это петалит (содержит 3,5- 4,9 % Li2O), сподумен (6-7 % Li2O), лепидолит (4-6 % Li2O) и амблигонит LiAl[PO4] 8-10 % Li2O. В виде примеси литий содержится в ряде породообразующих минералов, а также присутствует в рапе некоторых озер и в минерализованных водах. Применение: из лития изготовляют аноды химических источников тока, работающих на основе неводных твердых электролитов. Жидкий литий может служить теплоносителем в ядерных реакторах. Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий, в черной и цветной металлургии (для раскисления, повышения пластичности и прочности сплавов), для получения пластичных смазок. Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики). Биологическая роль: литий в незначительных количествах присутствует в живых организмах, но, по-видимому, не выполняет никаких биологических функций. Установлено его стимулирующее действие на некоторые процессы в растениях, способность повышать их устойчивость к заболеваниям. В организме среднего человека (масса 70 кг) содержится около 0,7 мг лития. Токсическая доза мг СМ.дальше.

Кристаллическая решетка описывается векторами равной длины, все углы прямые. Вершины куба имеют координаты 000 и 200, также имеется дополнительная частица с координатой 111 в центре куба. Элементарная ячейка имеет объем 1/2 от куба, т.е. параллелепипед с базисными векторами 200, 020 и 111.

БЕРИЛЛИЙ (лат. Beryllium), Ве, химический элемент II группы периодической системы, атомный номер 4, атомная масса 9,01218; относится к щелочноземельным металлам. Свойства: металлический бериллий характеризуется высокой хрупкостью. Температура плавления 1278°C, температура кипения около 2470°C, плотность 1,816 кг/м 3. До температуры 1277°C устойчив a-Ве (гексагональная решетка типа магния (Mg), параметры а = 0,22855 нм, с = 0,35833 нм), при температурах, предшествующих плавлению металла ( °C) b-Ве с кубической решеткой. Нахождение в природе: бериллий относится к редким элементам, его содержание в земной коре 2,6·10–4 % по массе. В морской воде содержится до 6·10–7 мг/л бериллия. Основные природные минералы, содержащие бериллий: берилл Be3Al2(SiO3)6, фенакит Be2SiO4, бертрандит Be4Si2O8·H2O и кельвин (Mn,Fe,Zn)4[BeSiO4]3S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит и другие. В настоящее время их научились синтезировать искусственно. Физиологическое действие: в живых организмах бериллий, по-видимому, не несет никакой биологической функции. Его содержание в организме среднего человека (масса тела 70 кг) составляет 0,036 мг, ежедневное поступление с пищей около 0,01 мг. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны. Бериллий замещает в ферментах магний и обладает ярко выраженным аллергическим и канцерогенным действием. Его присутствие в атмосферном воздухе приводит к тяжелому заболеванию органов дыхания бериллиозу. Следует отметить, что эти заболевания могут возникнуть через лет после прекращения контакта с бериллием. Для воздуха ПДК в пересчете на бериллий составляет 0,001 мг/м 3. См.дальше

Определяется тремя базовыми векторами, два из которых равны и угол между ними 60°, а третий ми перпендикулярен. В гексагональной сингонии три элементарных ячейки образуют правильную призму на шестигранном основании.

БОР (лат. Borum), В, химический элемент III группы периодической системы, атомный номер 5, атомная масса 10,811. Природный бор состоит из двух стабильных нуклидов 10В (19,57%) и 11В. Свойства: по многим физическим и химическим свойствам неметалл бор напоминает элемент IV A группы, неметалл кремний (Si). Нахождение в природе: в природе бор в свободном виде не встречается. Важнейшие минералы: бура Na2B4O7·10H2O (тетраборат натрия (Na)), кернит Na2B4O7·4H2O и другие природные бораты, сассолин (борная кислота) H3BO3. Соединения бора (бораты, боросиликаты, бороаммосиликаты), часто в небольших концентрациях, входят в состав вулканических и осадочных пород. Присутствует в воде озер (особенно горьких) и морей. Содержание бора в земной коре 1·10–3 % по массе (28-е место), в воде океанов 4,41·10–4 % (4,4 мг/л). Биологическая роль: бор важный микроэлемент, необходимый для нормальной жизнедеятельности растений. Недостаток бора останавливает их развитие, вызывает у культурных растений различные болезни. В основе этого лежат нарушения окислительных и энергетических процессов в тканях, снижение биосинтеза необходимых веществ. При дефиците бора в почве в сельском хозяйстве применяют борные микроудобрения (борная кислота, бура и другие), повышающие урожай, улучшающие качество продукции и предотвращающие ряд заболеваний растений. Роль бора в животном организме не выяснена. В мышечной ткани человека содержится (0,33-1)·10–4 % бора, в костной ткани (1,1-3,3)·10–4 %, в крови 0,13 мг/л. Ежедневно с пищей человек получает 1-3 мг бора. Токсичная доза 4 г. См.дальше

Кристаллическая решетка образована тремя базовыми векторами. В ромбоэдрической решетке кристалл образован векторами, имеющими равную длину. Каждые 3 из них - взаимно не ортогональны (углы между ними не прямые).

УГЛЕРОД (лат. Carboneum), С, химический. элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Свойства: при обычных условиях углерод химически инертен; при высоких температурах соединяется с многими элементами (сильный восстановитель). Углерод обладает уникальной способностью образовывать огромное количество соединений, которые могут состоять практически из неограниченного числа атомов углерода. Многообразие соединений углерода определило возникновение одного из основных разделов химии органической химии. Основные кристаллические модификации: алмаз и графит. Нахождение в природе: содержание углерода в земной коре 6,5·1016 т. Значительное количество углерода (около 1013 т) входит в состав горючих ископаемых (уголь, природный газ, нефть и др.), а также в состав углекислого газа атмосферы (6·1011 т) и гидросферы (1014 т). Главные углеродсодержащие минералы карбонаты. Биологическая роль: углерод - биогенный элемент. Его соединения играют особую роль в жизнедеятельности растительных и животных организмов (среднее содержание углерода 18%). Углерод широко распространен в космосе; на Солнце он занимает 4-е место после водорода (H), гелия (He) и кислорода (O). См.дальше

Кристаллическая решетка определяется тремя базовыми векторами, два из которых равны и угол между ними 60°, а третий ми перпендикулярен. В гексагональной сингонии три элементарных ячейки образуют правильную призму на шестигранном основании.

АЗОТ (лат. Nitrogenium рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. Название: название от греческой a (отрицательная приставка) и zoe жизнь (не поддерживает дыхания и горения). Физические свойства: плотность газообразного азота при 0°C 1,25046 г/дм 3, жидкого азота (при температуре кипения) 0,808 кг/дм 3. Газообразный азот при нормальном давлении при температуре –195,8°C переходит в бесцветную жидкость, а при температуре –210,0°C в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже –237,54°C устойчива форма с кубической решеткой, выше с гексагональной. Нахождение в природе: в природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде в состав двух селитр: натриевой NaNO3 (встречается в Чили, отсюда название чилийская селитра) и калиевой KNO3 (встречается в Индии, отсюда название индийская селитра) и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом. Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами. Превращения соединений азота в живых клетках важнейшая часть обмена веществ у всех организмов.

КИСЛОРОД (лат. Oxygenium), O (читается «о»), химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA. Нахождение в природе: кислород самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры. Особенности строения молекулы О2: атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О2 0,12074 нм. Молекулярный кислород (газообразный и жидкий) парамагнитное вещество, в каждой молекуле О2 имеется по 2 неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух разрыхляющих орбиталей находится по одному неспаренному электрону. Энергия диссоциации молекулы О2 на атомы довольно высока и составляет 493,57 к Дж/моль. См.дальше

Кристаллическая решетка описывается ребрами равной длины, взаимно перпендикулярными.

ФТОР (лат. Fluorum), F, химический элемент с атомным номером 9, атомная масса 18, Свойства: при обычных условиях фтор газ (плотность 1,693 кг/м 3) с резким запахом. Температура кипения –188,14°C, температура плавления –219,62°C. В твердом состоянии образует две модификации: a-форму, существующую от температуры плавления до –227,60°C, и b-форму, устойчивую при температурах, более низких, чем –227,60°C. Нахождение в природе: содержание фтора в земной коре довольно велико и составляет 0,095% по массе (значительно больше, чем ближайшего аналога фтора по группе хлора (Cl)) Биологическая роль: в качестве микроэлемента фтор входит в состав всех организмов. У животных и человека фтор присутствует в костной ткани (у человека 0,2-1,2%) и, особенно, в дентине и эмали зубов. В организме среднего человека (масса тела 70 кг) содержится 2,6 г фтора; суточная потребность составляет 2-3 мг и удовлетворяется, главным образом, с питьевой водой. Недостаток фтора приводит к кариесу зубов. Поэтому соединения фтора добавляют в зубные пасты, иногда вводят в состав питьевой воды. Избыток фтора в воде, однако, тоже вреден для здоровья. Он приводит к флюорозу изменению структуры эмали и костной ткани, деформации костей. ПДК для содержания в воде фторид-ионов составляет 0,7 мг/л. ПДК газообразного фтора в воздухе 0,03 мг/м 3. Роль фтора в растениях неясна. (СМ.дальше)

Кристаллическая решетка описывается ребрами равной длины, взаимно перпендикулярными.

НАТРИЙ (лат. Natrium), Na, химический элемент I группы периодической системы Менделеева, атомный номер 11, атомная масса 22,98977; относится к щелочным металлам. Свойства: серебристо-белый металл, мягкий, легкий (плотность 0,968 г/см 3), легкоплавкий (tпл 97,86 °С). На воздухе быстро окисляется. Взаимодействие с водой может сопровождаться взрывом. Натрий участвует в минеральном обмене всех живых организмов. Название: название (от арабского натрун) первоначально относилось к природной соде. Нахождение в природе: занимает 6-е место по распространенности в земной коре (минералы галит, мирабилит и др.) и 1-е среди металлических элементов в Мировом океане. Применение: применяют для получения чистых металлов (калия (К), циркония (Zr), тантала (Та) и др.), как теплоноситель в ядерных реакторах (сплав с калием) и источник свечения в натриевых лампах. (СМ.дальше)

Кристаллическая решетка описывается векторами равной длины, все углы прямые. Вершины куба имеют координаты 000 и 200, также имеется дополнительная частица с координатой 111 в центре куба. Элементарная ячейка имеет объем 1/2 от куба, т.е. параллелепипед с базисными векторами 200, 020 и 111.

МАГНИЙ (лат. Magnesium), Mg (читается «магний»), химический элемент IIА группы третьего периода периодической системы Менделеева, атомный номер 12, атомная масса 24,305 Нахождение в природе: магний один из десяти наиболее распространенных элементов земной коры (8-е место). В ней содержится 2,35% магния по массе. Получение: обычный промышленный метод получения металлического магния это электролиз расплава смеси безводных хлоридов магния MgCl2, натрия NaCl и калия KCl. Применение: основная часть добываемого магния используется для получения различных легких магниевых сплавов. В состав этих сплавов, кроме магния, входят, как правило, алюминий, цинк, цирконий. Такие сплавы достаточно прочны и находят применение в самолетостроении, приборостроении и для других целей. Биологическая роль: магний биогенный элемент, постоянно присутствующий в тканях всех организмов. Он входит в состав молекулы зеленого пигмента растений хлорофилла, участвует в минеральном обмене, активирует ферментные процессы в организме, повышает засухоустойчивость растений. С участием ионов Mg+ осуществляется биолюминесценция и ряд других биологических процессов. Широкое практическое применение находят магниевые удобрения доломитовая мука, жженая магнезия и др. (СМ.дальше)

Определяется тремя базовыми векторами, два из которых равны и угол между ними 60°, а третий ми перпендикулярен. В гексагональной сингонии три элементарных ячейки образуют правильную призму на шестигранном основании.

АЛЮМИНИЙ (лат. Aluminium; от "alumen" квасцы), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26, Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III). Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5. Простое вещество алюминий мягкий легкий серебристо-белый металл. Свойства: алюминий типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см 3. Температурный коэффициент линейного расширения алюминия около 2,5·10–5 К–1. Стандартный электродный потенциал Al3+/Al 1,663В. Химически алюминий довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al2О3, которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению пр новая.pptпр новая.ppt

КРЕМНИЙ (лат. Silicium), Si, химический элемент IV группы периодической системы, атомный номер 14, атомная масса 28,0855. КРЕМНИЙ (лат. Silicium), Si, химический элемент IV группы периодической системы, атомный номер 14, атомная масса 28,0855. Свойства: темно-серые кристаллы с металлическим блеском; плотность 2,33 г/см 3, tпл 1415 °С. Стоек к химическим воздействиям. Свойства: темно-серые кристаллы с металлическим блеском; плотность 2,33 г/см 3, tпл 1415 °С. Стоек к химическим воздействиям. Нахождение в природе: составляет 27,6% массы земной коры (2-е место среди элементов). Главные минералы: кремнезем и силикаты. Применение: один из важнейших полупроводниковых материалов (транзисторы, термисторы, фотоэлементы). Составная часть многих сталей и других сплавов (повышает механическую прочность и устойчивость к коррозии, улучшает литейные свойства). Применение: один из важнейших полупроводниковых материалов (транзисторы, термисторы, фотоэлементы). Составная часть многих сталей и других сплавов (повышает механическую прочность и устойчивость к коррозии, улучшает литейные свойства).

ФОСФОР (лат. Phosphorus), Р, химический элемент V группы периодической системы Менделеева, атомный номер 15, атомная масса 30, Свойства: образует несколько модификаций: белый фосфор (плотность 1,828 г/см 3, tпл 44,14 °С), красный фосфор (плотность 2,3 г/см 3, tпл 590 °С) и др. Белый фосфор легко самовоспламеняется, светится в темноте (отсюда название), ядовит; красный менее активен химически, ядовит. Название: от греческого "phosphoros" (светоносный). Получение: добывают из апатитов и фосфоритов. Нахождение в природе: присутствует в живых клетках в виде орто- и пирофосфорной кислот и их производных. Применение: главный потребитель сельское хозяйство (фосфорные удобрения); применяется в спичечном производстве, металлургии (раскислитель и компонент некоторых сплавов), в органическом синтезе и др.

СЕРА (лат. Sulfur), S, химический элемент с атомным номером 16, атомная масса 32,066. Химический символ серы S произносится «эс». Природная сера состоит из четырех стабильных нуклидов: 32S (содержание 95,084% по массе), 33S (0,74 %), 34S (4,16%) и 36S (0,016 %). Радиус атома серы 0,104 нм. Радиусы ионов: иона S2– 0,170 нм (координационное число 6), иона S4+ 0,051 нм (координационное число 6) и иона S6+ 0,026 нм (координационное число 4). Энергии последовательной ионизации нейтрального атома серы от S0 до S6+ равны, соответственно, 10,36, 23,35, 34,8, 47,3, 72,5 и 88,0 эВ. Сера расположена в VIA группе периодической системы Д. И. Менделеева, в 3-м периоде, и принадлежит к числу халькогенов. Конфигурация внешнего электронного слоя 3s23p4. Наиболее характерны степени окисления в соединениях –2, +4, +6 (валентности соответственно II, IV и VI). Значение электроотрицательности серы по Полингу 2,6. Сера относится к числу неметаллов. В свободном виде сера представляет собой желтые хрупкие кристаллы или желтый порошок. Физические и химические свойства: атомы серы обладают уникальной способностью образовывать устойчивые гомоцепи, т. е. цепи, состоящие только из атомов S (энергия связи S–S составляет около 260 к Дж/моль). Гомоцепи серы имеют зигзагообразную форму, так как в их образовании принимают участие электроны, расположенные в соседних атомах на взаимно перпендикулярных р-орбиталях. Эти цепи могут достигать большой длины, или, наоборот, образовывать замкнутые кольца S20, S8, S6, S4. Нахождение в природе: сера довольно широко распространена в природе. В земной коре ее содержание оценивается в 0,05% по массе. В природе часто встречаются значительные залежи самородной серы (обычно вблизи вулканов); в Европе они расположены на юге Италии, в Сицилии. Еще большие залежи самородной серы имеются в США (в штатах Луизиана и Техас), а также в Средней Азии, в Японии, в Мексике. В природе сера встречается как россыпями, так и в виде кристаллических пластов, иногда образуя изумительные по красоте группы полупрозрачных желтых кристаллов (так называемые друзы).

ХЛОР (лат. Chlorum), Cl, химический элемент VII группы периодической системы Менделеева, атомный номер 17, атомная масса 35,453; относится к галогенам. Свойства: газ желто-зеленого цвета с резким запахом. Плотность 3,214 г/л; tпл= –101 °С; tкип= – 33,97 °С. При обычной температуре легко сжижается под давлением 0,6 МПа. Химически очень активен (окислитель). Токсичен. Название: название от греческого "chloros" (желто-зеленый). Главные минералы: галит (каменная соль), сильвин, бишофит. Нахождение в природе: морская вода содержит хлориды натрия, калия, магния и других элементов. Применение: применяют в производстве хлорсодержащих органических соединений (60-75%), неорганических веществ (10-20%), для отбелки целлюлозы и тканей (5-15%), для санитарных нужд и обеззараживания (хлорирования) воды.

АРГОН (лат. Argon), Ar, химический элемент VIII группы периодической системы, атомный номер 18, атомная масса 39,948, относится к инертным, или благородным, газам. Природный аргон состоит из трех стабильных нуклидов: 36Ar (0,337%), 38Ar (0,063%) и 40Ar (99,600%). Простое вещество аргон газ без запаха, цвета и вкуса. Физические свойства: аргон одноатомный газ с температурой кипения (при нормальном давлении) –185,9°C (немного ниже, чем у кислорода, но немного выше, чем у азота), температура плавления –189,3°C. Критическая температура –122,43°C, критическое давление 4,86 МПа. Плотность при нормальных условиях 1,7839 кг/м 3. История открытия: к открытию аргона привело обнаруженное в 1892 году английским физиком Дж. Рэлеем небольшое (всего на 0,13%) превышение плотности азота (N), выделяемого из воздуха, над плотностью «химического» азота, возникающего при термическом разложении нитрита аммония NH4NO2. Вместе с другим английским физиком У. Рамзаем Дж. Рэлей в 1894 году выделил из воздуха примесь более тяжелого (по сравнению с азотом) газа, который отличался одноатомным составом молекул и практически полной химической недеятельностью (аргон не вступает ни в какие химические реакции). Именно из-за своей удивительной химической инертности новый газ и получил свое название (греч. аrgos неактивный). Получение: в промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. Нахождение в природе: аргон распространен в природе только в свободном виде. В земной коре его содержание составляет 1,2·10–4 %, в морской воде 0,45·10–4 %. В атмосферном воздухе содержится 0,93% аргона по объему (9,34 л в 1 м 3). Это значительно больше, чем содержание в воздухе всех остальных инертных газов вместе взятых. Воздух служит неиссякаемым источником для получения аргона.

КАЛИЙ (лат. Kalium), K (читается «калий»), химический элемент с атомным номером 19, атомная масса 39,0983. Нахождение в природе: содержание калия в земной коре 2,41% по массе, калий входит в первую десятку наиболее распространенных в земной коре элементов (7-е место). Основные минералы, содержащие калий: сильвин KСl (52,44% К), сильвинит (Na,K)Cl (этот минерал представляет собой плотно спрессованную механическую смесь кристалликов хлорида калия KCl и хлорида натрия (Na) NaCl), карналлит KCl·MgCl2·6H2O (35,8% К), различные алюмосиликаты, содержащие калий, каинит KCl·MgSO4·3H2O, полигалит K2SO4·MgSO4·2CaSO4·2H2O, алунит KAl3(SO4)2(OH)6. В морской воде содержится около 0,04% калия (см. также Калийные соли). Получение: в настоящее время калий получают при взаимодействии с жидким натрием (Na) расплавленных KOH (при °C) или KCl (при °C): Применение: металлический калий материал для электродов в химических источниках тока. Сплав калия с другим щелочным металлом натрием (Na) находит применение в качестве теплоносителя в ядерных реакторах. В гораздо больших масштабах, чем металлический калий, находят применение его соединения. Биологическая роль: калий один из важнейших биогенных элементов, постоянно присутствующий во всех клетках всех организмов. Ионы калия К+ участвуют в работе ионных каналов и регуляции проницаемости биологических мембран, в генерации и проведении нервного импульса, в регуляции деятельности сердца и других мышц, в различных процессах обмена веществ. Содержание калия в тканях животных и человека регулируется стероидными гормонами надпочечников. В среднем организм человека (масса тела 70 кг) содержит около 140 г калия. Поэтому для нормальной жизнедеятельности с пищей в организм должно поступать 2-3 г калия в сутки. Богаты калием такие продукты, как изюм, курага, горох и другие. Особенности обращения с металлическим калием: металлический калий может вызвать очень сильные ожоги кожи, при попадании мельчайших частичек калия в глаза возникают тяжелые поражения с потерей зрения, поэтому работать с металлическим калием можно только в защитных перчатках и очках. Загоревшийся калий заливают минеральным маслом или засыпают смесью талька и NaCl. Хранят калий в герметично закрытых железных контейнерах под слоем обезвоженного керосина или минерального масла.

КАЛЬЦИЙ (лат. Calcium), Ca, химический элемент II группы периодической системы, атомный номер 20, атомная масса 40,078; относится к щелочноземельным металлам. Свойства: серебристо-белый металл, плотность 1,54 г/см 3, tпл 842 °С. При обычной температуре легко окисляется на воздухе. Название: название от латинского "calx", родительный падеж "calcis" (известь). Нахождение в природе: по распространенности в земной коре занимает 5-е место (минералы: кальцит, гипс, флюорит и др.). Применение: как активный восстановитель служит для получения урана (U), тория (Th), ванадия (V), хрома (Cr), цинка (Zn), бериллия (Be) и других металлов из их соединений; для раскисления сталей, бронз и т. д. Входит в состав антифрикционных материалов. Соединения кальция применяют в строительстве (известь, цемент); препараты кальция в медицине.

КАНДИЙ (лат. Scandium), Sc, химический элемент III группы периодической системы, атомный номер 21, атомная масса 44,95591, относится к редкоземельным элементам. Свойства: плотность 3,02 г/см 3, tпл 1541°С. Название: назван от латинского "Scandia" (Скандинавский полуостров), где был открыт элемент. Применение: компонент легких сплавов с высокими прочностью и коррозионной устойчивостью, катализатор высокотемпературной пара-орто-конверсии водорода, нейтронный фильтр в ядерной технике.

ТИТАН (лат. Тitanium), Ti, химический элемент IV группы периодической системы, атомный номер 22, атомная масса 47,88. Свойства: серебристо-белый металл; легкий, тугоплавкий, прочный, пластичный; плотность 4,505 г/см 3, tпл 1671 °С. Очень стоек химически (благодаря образованию защитной пленки из диоксида TiO2). Название: от греческого "Titanes" (титаны). Нахождение в природе: по распространенности в земной коре на 9-м месте среди элементов (главные минералы: рутил, анатаз, ильменит, лейкоксен, лопарит). Применение: титан и его сплавы важнейшие конструкционные материалы в авиа-, ракето-, кораблестроении, в химической промышленности (реакторы, трубопроводы, насосы).

ВАНАДИЙ (лат. Vanadium), V (читается «ванадий»), химический элемент с атомным номером 23, атомная масса 50,9415. Физические и химические свойства: ванадий по внешнему виду похож на сталь, это достаточно твердый, но вместе с тем пластичный металл. Температура плавления 1920°C, температура кипения около 3400°C, плотность 6,11 г/см 3. Кристаллическая решетка кубическая объемно центрированная, параметр а = 0,3024 нм. Химически ванадий довольно инертен. Нахождение в природе: в природе ванадий в свободном виде не встречается, относится к рассеянным элементам. Содержание ванадия в земной коре 1,6·10–2% по массе, в воде океанов 3.10–7%. Важнейшие минералы: патронит V(S2)2, ванадинит Pb5(VO4)3Cl и некоторые другие. Основной источник получения ванадия железные руды, содержащие ванадий как примесь. Применение: ванадий в основном используется как легирующая добавка при получении износоустойчивых, жаропрочных и коррозионно-стойких сплавов (прежде всего, специальных сталей), как компонент при получении магнитов. Оксид ванадия V2O5 служит эффективным катализатором, например, при окислении сернистого газа SO2 в серный газ SO3 при производстве серной кислоты. Соединения ванадия находят разнообразное применение в различных отраслях промышленности (текстильной, стекольной, лакокрасочной и др.). Биологическая роль: ванадий постоянно присутствует в тканях всех организмов в ничтожных количествах. В растениях его содержание (0,1-0,2%) значительно выше, чем в животных (1·10–5-1·10–4%). Некоторые морские организмы мшанки, моллюски и, особенно, асцидии способны концентрировать ванадий в значительных количествах (у асцидий ванадий находится в плазме крови или специальных клетках ванадоцитах). По-видимому, ванадий участвует в некоторых окислительных процессах в тканях. Мышечная ткань человека содержит 2·10–6% ванадия, костная ткань 0,35·10–6%, в крови менее 2·10–4% мг/л. Всего в организме среднего человека (масса тела 70 кг) 0,11 мг ванадия. Ванадий и его соединения токсичны. Токсическая доза для человека 0,25 мг, летальная доза 2-4 мг. Для V2O5 ПДК в воздухе 0,1-0,5 мг/м 3.

РОМ (лат. Chromium), Cr, химический элемент VI группы Периодической системы Менделеева, атомный номер 24, атомная масса 51,9961. Свойства: голубовато-серебристый металл; плотность 7,19 г/см 3, tпл 1890 °С. На воздухе не окисляется. Название: название от греческого "chroma" (цвет, краска из-за яркой окраски соединения). Главные минералы: хромиты. Применение: применяется для хромирования. Хром обязательный компонент нержавеющих, кислотоупорных, жаростойких сталей и большого числа других сплавов (нихромы, хромали, стеллит). Соединения хрома окислители, неорганические пигменты, дубители.

МАРГАНЕЦ (лат. Manganum), Mn, химический элемент с атомным номером 25, атомная масса 54,9380. Химический символ элемента Mn произносится так же, как и название самого элемента. Нахождение в природе: в земной коре содержание марганца составляет около 0,1 % по массе. В свободном виде марганец не встречается. Из руд наиболее распространены пиролюзит MnO2 (содержит 63,2 % марганца), манганит MnO2·Mn(OH)2 (62,5 % марганца), браунит Mn2O3 (69,5 % марганца), родохрозит MnCo3 (47,8 % марганца), псиломелан mMnO·MnO2·nH2O (45-60% марганца) и ряд других. Марганец содержат железо-марганцевые конкреции, которые в больших количествах (сотни миллиардов тонн) находятся на дне Тихого, Атлантического и Индийского океанов. В морской воде содержится около 1,0·10–8 % марганца. Промышленного значения эти запасы марганца пока не имеют из-за сложности подъема конкреций на поверхность. Применение: более 90% производимого марганца идет в черную металлургию. Марганец используют как добавку к сталям для их раскисления, десульфурации (при этом происходит удаление из стали нежелательных примесей кислорода, серы и других), а также для легирования сталей, т. е. улучшения их механических и коррозионных свойств. Марганец применяется также в медных, алюминиевых и магниевых сплавах. Покрытия из марганца на металлических поверхностях обеспечивают их антикоррозионную защиту. Для нанесения тонких покрытий из марганца используют легко летучий и термически нестабильный биядерный декакарбонил Mn2(CO)10. Биологическая роль: марганец микроэлемент, постоянно присутствующий в живых организмах и необходимый для их нормальной жизнедеятельности. Содержание марганца в растениях составляет 10–4-10–2 %, в животных 10–3-10–5 %, некоторые растения (водяной орех, ряска, диатомовые водоросли) и животные (муравьи, устрицы, ряд ракообразных) способны концентрировать марганец. В организме среднего человека (масса тела 70 кг) содержится 12 мг марганца. Марганец необходим животным и растениям для нормального роста и размножения. Он активирует ряд ферментов, участвует в процессах дыхания, фотосинтеза, влияет на проветривание и минеральный обмен.

Fe Железо ЖЕЛЕЗО (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Нахождение в природе: в земной коре железо распространено достаточно широко на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe2O3; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe3О4; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO2·nH2O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО3; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS2 (другие названия серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10–5 1·10–8% железа. Применение железа, его сплавов и соединений: чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа чугун и сталь составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее. Биологическая роль: железо присутствует в организмах всех растений и животных как микроэлемент, то есть в очень малых количествах (в среднем около 0,02%).

КОБАЛЬТ (лат. Cobaltum), Со, химический элемент VIII группы периодической системы, атомный номер 27, атомная масса 58,9332. Свойства: серебристо-белый металл с красноватым оттенком; плотность 8,9 г/см 3, tпл 1494 °С; ферромагнитен (точка Кюри 1121 °С). При обычной температуре на воздухе химически стоек. Название: название от немецкого "Kobold" (домовой, гном). Получение: минералы редки, добывается из руд никеля. Применение: в основном, кобальт используется для получения кобальтовых сплавов (магнитные, жаропрочные, сверхтвердые, коррозионностойкие и др.). Радиоактивный изотоп 60Со используют как источник g-излучения в медицине и технике. Кобальт важен для жизни растений и животных, входит в состав витамина B12.

НИКЕЛЬ (лат. Niссolum), Ni, химический элемент с атомным номером 28, атомная масса 58,69. Химический символ элемента Ni произносится так же, как и название самого элемента. Нахождение в природе: в земной коре содержание никеля составляет около 8·10–3 % по массе. Получение: значительную часть никеля получают из сульфидных медно-никелевых руд. Из обогащенного сырья сначала готовят штейн сульфидный материал, содержащий, кроме никеля, еще и примеси железа, кобальта, меди и ряда других металлов. Методом флотации получают никелевый концентрат. Далее штейн обычно подвергают обработке для отделения примесей железа и меди, а затем обжигают и образовавшийся оксид восстанавливают до металла. Существуют и гидрометаллургические методы получения никеля, в которых для его извлечения из руды используют раствор аммиака или серной кислоты. Для дополнительной очистки черновой никель подвергают электрохимическому рафинированию. Применение: основная доля выплавляемого никеля (до 80%) расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36-38% никеля, обладает удивительно низким коэффициентом термического расширения (это так называемый сплав инвар), и его применяют при изготовлении ответственных деталей различных приборов. Биологическая роль: никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям у растений появляются уродливые формы, у животных заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м 3 (для различных соединений).

МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент I группы периодической системы Менделеева, атомный номер 29, атомная масса 63,546. Название: латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет. Физические и химические свойства: кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см 3, температура плавления 1083,4°C, температура кипения 2567°C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20°C удельное сопротивление 1,68·10–3 Ом·м). Нахождение в природе: в земной коре содержание меди составляет около 5·10–3% по массе Биологическая роль: медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы). В растениях и животных содержание меди варьируется от 10–15 до 10–3%. Мышечная ткань человека содержит 1·10–3% меди, костная ткань (1-26)·10–4 %, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных - участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков. Церулоплазмин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ. Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0,5-6 мг меди.

ЦИНК (лат. Zincum), Zn, химический элемент II группы периодической системы Менделеева, атомный номер 30, атомная масса 65,39. Свойства: серебристо-белый металл; плотность 7,133 г/см 3, tпл 419,5 °С. На воздухе покрывается защитной пленкой оксида. Важнейший минерал: сфалерит. Применение: применяют в щелочных аккумуляторах, для цинкования, получения многих сплавов (например, латуни).

БРОМ (лат. Bromum), Br, химический элемент VII группы периодической системы, атомный номер 35, атомная масса 79,904, относится к галогенам. Название: связано с тем, что у брома тяжелый, неприятный запах паров (от греческого bromos зловоние). История открытия: к открытию брома привели исследования французского химика А.Балара, который в 1825 году, действуя хлором на водный раствор, полученный после промывания золы морских водорослей, выделил темно-бурую дурно пахнущую жидкость. Эту жидкость, полученную также из морской воды, он назвал муридом (от лат. muria соляной раствор, рассол) и послал сообщение о своем открытии в Парижскую академию наук. Комиссия, созданная для проверки этого сообщения, не приняла название Балара и назвала новый элемент бромом. Открытие брома сделало молодого и мало кому известного ученого знаменитым. После появления статьи Балара оказалось, что склянки с аналогичным веществом ждали исследования у немецких химиков К. Левига и Ю. Либиха. Упустивший возможность открыть новый элемент, Либих воскликнул: Это не Балар открыл бром, а бром открыл Балара. Нахождение в природе: бром довольно редкий в земной коре элемент. Его содержание в ней оценивается в 0,37·10–4% (примерно 50-е место). Применение: бром применяют при получении ряда неорганических и органических веществ, в аналитической химии. Соединения брома используют в качестве топливных добавок, пестицидов, ингибиторов горения, а также в фотографии. Широко известны содержащие бром лекарственные препараты. Следует отметить, что расхожее выражение: врач прописал бром по столовой ложке после еды означает, разумеется, лишь то, что прописан водный раствор бромида натрия (или калия), а не чистый бром. Успокаивающее действие бромистых препаратов основано на их способности усиливать процессы торможения в центральной нервной системе.

ГАЛЛИЙ (лат. Gallium), Ga, химический элемент III группы периодической системы, атомный номер 31, атомная масса 69,723. Свойства: серебристо-белый, легкоплавкий (tпл 29,77 °С) металл. Плотность твердого металла 5,904 г/см 3, жидкого 6,095 г/см 3; tкип 2205 °С. На воздухе химически стоек. Название: назван от Gallia, латинского названия Франции. Нахождение в природе: в природе рассеян, встречается вместе с алюминием (Al). Применение: применяют в основном (97%) в производстве полупроводниковых материалов (GaAs, GaSb, GaP, GaN).

ГЕРМАНИЙ (лат. Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Свойства: серебристо-серые кристаллы; плотность 5,33 г/см 3, tпл 938,3 °С. Название: назван от латинского Germania (Германия), в честь родины К. А. Винклера. Нахождение в природе: в природе рассеян (собственно минералы редки). Получение: добывают из руд цветных металлов. Применение: полупроводниковый материал для электронных приборов (диоды, транзисторы и др.), компонент сплавов, материал для линз в ИК-приборах, детекторов ионизированного излучения.

МЫШЬЯК (лат. Arsenicum), As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216. Свойства: образует несколько модификаций. Обычный мышьяк (металлический или серый) представляет собой хрупкие кристаллы с серебристым блеском; плотность 5,74 г/см 3, при 615 °С возгоняется. На воздухе окисляется и тускнеет. Компонент сплавов с медью, свинцом, оловом и др. и полупроводниковых материалов. Соединения мышьяка физиологически активны и ядовиты. Название: русское название от слова «мышь» (препараты мышьяка применялись для истребления мышей и крыс). Получение: добывают из сульфидных руд (минералы: арсенопирит, аурипигмент, реальгар). Применение: соединения мышьяка служили одними из первых инсектицидов (смотри, например, Арсенаты металлов). Неорганические соединения мышьяка применяются в медицине как общеукрепляющие, тонизирующие средства; органические как противомикробные и противопротозойные (при лечении сифилиса, амебиаза и др.).

СЕЛЕН (лат. Selenium), Se, химический элемент VI группы периодической системы Менделеева, атомный номер 34, атомная масса 78,96. Свойства: образует несколько модификаций. Наиболее устойчив серый селен: кристаллы, плотность 4,807 г/см 3, tпл 221 °С. Все соединения селена ядовиты. Название: от греческого "selene" (Луна). Нахождение в природе: в природе рассеян, сопутствует сере (S). Получение: добывают из отходов (шламов) при электролитической очистке меди (Cu). Применение: полупроводник, обладающий фотоэлектрическими свойствами. Селеновые фотоэлементы применяют в различных устройствах, например, фотоэлектрических экспонометрах.

КРИПТОН (лат. Krypton), Kr, химический элемент VIII группы периодической системы, атомный номер 36, атомная масса 83,80, относится к инертным, или благородным, газам. Свойства: плотность 3,745 г/л, tкип 153,35 °С. Название: от греческого "kryptos" (скрытый), в связи с трудностями получения. Применение: применяют главным образом в криптоновых лампах, в газоразрядных трубках и в лазерах. Дифторид KrF2 сильный окислитель, фторирующий агент.

РУБИДИЙ (лат. Rubidium), Rb, химический элемент I группы периодической системы Менделеева, атомный номер 37, атомная масса 85,4678. Относится к щелочным металлам. Свойства: серебристо-белый металл пастообразной консистенции. Плотность 1,5248 г/см 3, tпл 39,5 °С, tкип 685 °С. На воздухе мгновенно воспламеняется, с водой реагирует со взрывом. Название: от латинского "rubidus" (темно-красный), открыт по линиям в красной части спектра. Нахождение в природе: в природе рассеян, сопутствует калию (K) и литию (Li) и добывается из их минералов. Применение: применяется ограниченно (катоды для фотоэлементов, добавка в газоразрядные трубки, катализатор в органическом синтезе).

СТРОНЦИЙ (лат. Strontium), Sr, химический элемент II группы периодической системы, атомный номер 38, атомная масса 87,62, относится к щелочноземельным металлам. Свойства: серебристо-белый металл; плотность 2,63 г/см 3, tпл 768 °С. Химически очень активен. При ядерных взрывах, в ядерных реакторах образуется радиоактивный изотоп 90Sr (период полураспада 27,7 лет), представляющий большую опасность для человека при попадании его в природную среду. Название: назван по минералу стронцианиту, найденному около деревни Строншиан (Strontian) в Шотландии. Применение: химически очень активен, поэтому сам металл применяют мало (при выплавке меди и бронз для их очистки, в электровакуумной технике как геттер). Соли в производстве красок, светящихся составов, глазурей и эмалей. SrTiO3 сегнетоэлектрик.

ИТТРИЙ (лат. Yttrium), Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059, относится к редкоземельным элементам. Свойства: металл. Плотность 4,472 г/см 3, tпл 1528 °С. Название: назван по минералу иттербиту (гадолиниту), найденному около селения Иттербю в Швеции (как и тербий (Tb), эрбий (Er), иттербий (Yb)). Применение: легирующая добавка ко многим сплавам, конструкционный материал для ядерных реакторов. Иттриевые гранаты применяют в радиоэлектронике, как лазерные материалы.

ЦИРКОНИЙ (лат. Zirconium), Zr, химический элемент IV группы периодической системы Менделеева, атомный номер 40, атомная масса 91,224. Свойства: серебристо-белый металл, твердый, тугоплавкий; плотность 6,50 г/см 3, tпл 1855 °С. Химически очень стоек (на воздухе покрывается защитной пленкой ZrO2). Название: назван по минералу циркону. Применение: промышленные источники минералы циркон и бадделеит. Сплавы на основе циркония конструкционные материалы в ядерной энергетике. Цирконий входит также в состав сплавов для изготовления химической аппаратуры, хирургических инструментов и пр. Некоторые сплавы циркония сверхпроводники. Сверхтугоплавкие карбид (tпл 3800 °С), борид и нитрид циркония материалы для жаростойкой керамики.

НИОБИЙ (лат. Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064. Свойства: светло-серый тугоплавкий металл, плотность 8,57 г/см 3, tпл 2477 °С, температура перехода в сверхпроводящее состояние 9,28 К. Химически очень стоек. Название: назван от имени Ниобы, дочери мифологического Тантала (близость свойств ниобия и тантала (Ta)). Минералы: пирохлор, колумбит, лопарит и др. Применение: компонент химически стойких и жаростойких сталей, из которых изготовляют детали ракет, реактивных двигателей, химическую и нефтеперегонную аппаратуру. Ниобием и его сплавами покрывают тепловыделяющие элементы (ТВЭЛы) ядерных реакторов. Станнид (Nb3Sn), германид (Nb3Ge), сплавы ниобия с оловом (Sn), титаном (Ti) и цирконием (Zr) используют для изготовления сверхпроводящих соленоидов (Nb3Ge сверхпроводник с температурой перехода в сверхпроводящее состояние 23,2 К).

МОЛИБДЕН (лат. Molybdaenum), Мо, химический элемент VI группы периодической системы, атомный номер 42, атомная масса 95,94. Свойства: светло-серый металл, плотность 10,2 г/см 3, tпл 2623 °С. Химически стоек (на воздухе окисляется при температуре выше 400 °С). Название: от греческого "molybdos" (свинец), по сходству минералов молибдена и свинца (Рb). Главный минерал: молибденит. Применение: более 75% молибдена применяют для легирования чугунов и сталей, используемых в авиа- и автомобилестроении, при изготовлении лопаток турбин и др. Весьма перспективны жаропрочные (для реактивных двигателей) и кислотоупорные (аппараты химической промышленности) сплавы; так, сплав Fe-Ni-Mo стоек ко всем кислотам (кроме фторной HF) до 100 °С. Важный конструкционный материал в производстве нитей для электрических ламп и катодов для электровакуумных приборов. Оксиды МоО2, МоО3 катализаторы нефтехимических и других процессов.

ТЕХНЕЦИЙ (лат. Technetium), Тс, химический элемент VII группы периодической системы, атомный номер 43, атомная масса 98,9072. Свойства: радиоактивен, наиболее устойчивые изотопы 97Тс и 99Тс (период полураспада соответственно 2,6·106 и 2,12·105 лет). Серебристо-серый металл; плотность 11,487 г/см 3, tпл 2200 °С. История: первый искусственно полученный элемент; синтезирован итальянскими учеными Э. Сегре и К. Перрье в 1937 бомбардировкой ядер молибдена дейтронами. Название от греческого "technetos" (искусственный). Нахождение в природе: в природе найден в незначительных количествах в урановых рудах. Спектрально обнаружен на Солнце и некоторых звездах. Получение: получают из отходов атомной промышленности. Применение: компонент катализаторов. Изотоп 99Тс используют в диагностике опухолей головного мозга, при исследовании центральной и периферической гемодинамики.

РУТЕНИЙ (лат. Ruthenium), Ru, химический элемент VIII группы периодической системы Менделеева, атомный номер 44, атомная масса 101,07, относится к платиновым металлам. Свойства: плотность 12,37 г/см 3, tпл 2250 °С, tкип около 4200 °С. Входит в состав сплавов, обладающих высокой твердостью и стойкостью против истирания. Название: от позднелатинского "Ruthenia" (Россия). Открыт К. К. Клаусом. Применение: катализатор многих химических реакций.

ПАЛЛАДИЙ (лат. Palladium), Pd, химический элемент VIII группы периодической системы, атомный номер 46, атомная масса 106,42, относится к платиновым металлам. Свойства: плотность 12,02 г/см 3, tпл 1554 °С. Название: назван по планете Паллада. Нахождение в природе: наиболее крупные россыпные месторождения палладия находятся в нашей стране (Урал), в Колумбии, на Аляске и в Австралии. Небольшие примеси палладия часто находят в золотоносных песках. Но главным поставщиком этого металла стали месторождения сульфидных руд никеля (Ni) и меди (Cu). И, естественно, перерабатывая такие руды, в качестве побочного продукта извлекают драгоценный палладий. Обширные залежи таких руд найдены в Трансваале (Африка) и Канаде. Применение: в сплавах с другими металлами применяют для ювелирных изделий, химической аппаратуры, зубопротезирования. Катализатор многих химических реакций, в том числе и гидрирования.

СЕРЕБРО (лат. Argentum), Ag, химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,8682. Свойства: металл белого цвета, ковкий, пластичный; плотность 10,5 г/см 3, tпл 961,9 °С. Один из дефицитных элементов. Имеет наивысшую среди металлов электрическую проводимость, теплопроводность, отражательную способность. Серебро химически малоактивно, в присутствии сероводорода чернеет. Серебро обладает бактерицидными свойствами: ионы Ag+ стерилизуют воду. Открыт: серебро известно с древнейших времен. Получение: добывается главным образом из комплексных руд, в меньшей степени из серебряных руд. Применение: применяется в кинофотопромышленности, электротехнической и электронной промышленности, а также в производстве ювелирных изделий.

КАДМИЙ (лат. Cadmium), Cd, химический элемент II группы периодической системы, атомный номер 48, атомная масса 112,41. Свойства: серебристый металл с синеватым отливом, мягкий и легкоплавкий; плотность 8,65 г/см 3, tпл 321,1 °С. Многие соединения кадмия ядовиты. Название: название от греческого "kadmeia" (цинковая руда). Получение: добывают при переработке руд цинка (Zn), свинца (Pb) и меди (Cu). Применение: применяют для кадмирования, в мощных аккумуляторах, ядерной энергетике (регулирующие стержни реакторов), для получения пигментов. Входит в состав легкоплавких и других сплавов. Сульфиды, селениды и теллуриды кадмия полупроводниковые материалы.