Элементы комбинаторики классы, МБОУ Кочневская СОШ учитель Грязнова А.К 1.

Презентация:



Advertisements
Похожие презентации
1 Элементы комбинаторики 9 класс, элективный курс, учебный год МОУ Кочневская СОШ учитель Грязнова А.К.
Advertisements

Студента Группы ПР – 101(К) Савченко А.А Проверила Малыгина Г.С.
Элементы комбинаторики Размещения Урок алгебры в 9 классе ©Vyazovchenko N.K., 2012.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром. Из скольких вариантов завтрака Вова может.
Примеры комбинаторных задач Перестановки Перестановки Размещения Размещения Сочетания Сочетания.
Комбинаторные задачи. Комбинаторика. Правило умножения Комбинации и перестановки дерево вариантов.
ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды.
LOGO Элементы комбинаторики..
{ определение – правила равенства, суммы и произведения – принцип включений – исключений – обобщение правила произведения – общее правило произведения.
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
РАЗДЕЛ 8 Элементы теории вероятностей и математической статистики.
КОМБИНАТОРИКА. Комбинаторика (лат. «combina») соединять, сочетать это раздел математики, который изучает, сколько различных комбинаций можно составить.
Сколько четных двузначных чисел можно составить из цифр 0,1,2,4,5,9? Ответ:15 чисел
Перестановки. Размещения. Сочетания. Урок решения комбинаторных задач 9 класс Захарова Л.Г МБОУ «ОСОШ 2», Устьянский район.
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Выполнила : ученица 11 класса МБОУ « Среднекибечская СОШ » Канашского района ЧР Лукина Марина Проверила : учительница математики Тимофеева Г. Ф.
Признак равнобедренного треугольника Теорема. (Признак равнобедренного треугольника.) Если в треуголь­нике два угла равны, то он равнобедренный. Доказательство.
Выполнила ученица 5 а класса Пятакова Дарья. Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов.
У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. Билет в кино стоит 50 рублей. В начале продажи.
Транксрипт:

Элементы комбинаторики классы, МБОУ Кочневская СОШ учитель Грязнова А.К 1

Основные вопросы: 2 I.Что I.Что такое комбинаторика? Какие задачи считают комбинаторными? II.Перестановки III.Размещения IV.Сочетания

3 Не будем спорить - будем вычислять. Г. Л е й б н и ц Комбинаторика – радел математики, в котором рассматриваются задачи о подсчёте числа комбинаций составленных по определённым правилам.

4 II. II. Какие задачи считают комбинаторными? Комбинаторные задачи Задачи подсчёта числа комбинаций из конечного числа элементов Комбинаторика – от латинского слова combinare, что означает «соединять, сочетать». Методы комбинаторики находят широкое применение в физике, химии, биологии, экономики и др. областях знания. Комбинаторику можно рассматривать как часть теории множеств – любую комбинаторную задачу можно свести к задаче о конечных множествах и их отображениях.

5 I. Уровни решения комбинаторных задач 1. Начальный уровень. Задачи поиска хотя бы одного решения, хотя бы одного расположения объектов, обладающих заданным свойствами - отыскание такого расположения десяти точек на пяти отрезках, при котором на каждом отрезке лежит по четыре точки; - такого расположения восьми ферзей на шахматной доске, при котором они не бьют друг друга. Иногда удаётся доказать, что данная задача не имеет решения (например, нельзя расположить 10 шаров в 9 урнах так, что бы в каждой урне было не более одного шара – хотя бы в одной урне окажется не менее двух шаров).

6 2. Второй уровень. Если комбинаторная задача имеет несколько решений, то возникает вопрос о подсчете числа таких решений, описании всех решений данной задачи. 3. Третий уровень. Решения данной комбинаторной задачи отличаются друг от друга некоторыми параметрами. В этом случае возникает вопрос отыскания оптимального варианта решения такой задачи. Например: Путешественник хочет выехать из города А, посетить города В, С, и D. После чего вернуться в город А.

7 Путь Длина пути Путь Длина пути ABCDA1555ACDBA1300 ABDCA1300ADBCA1450 ACBDA1450ADCBA1550 С В А D На рис. изображена схема путей, связывающих эти города. Различные варианты путешествий отличаются друг от друга порядком посещения городов В, С, и.D. Существует шесть вариантов путешествия. В таблице указаны варианты и длин каждого Gryznova A.K.

8 Комбинаторные задачи на оптимизацию приходится решать мастеру, стремящемуся к быстрейшему выполнению задания, агроному, стремящемуся к наивысшей урожайности на данных полях, и т.д.

9 Мы будем рассматривать лишь задачи о подсчёте числа решений комбинаторной задачи. Этот раздел комбинаторики, называемый теорией перечислений, тесно связан с теорией вероятностей.

10 Правила суммы и произведения 1. Сколько различных коктейлей можно составить из четырёх напитков, смешивая их в равных количествах по два? AB, AC, AD, BC, BD, CD – всего 6 коктейлей 2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ? Первой цифрой двузначного числа может одна из цифр 1, 2, 3 (цифра 0 не может быть первой). Если первая цифра выбрана, то вторая может быть любая из цифр 0, 1, 2, 3. Т.к. каждой выбранной первой соответствует четыре способа выбора второй, то всего имеется = 4·3 = 12 различных двузначных чисел. А DС В

11 2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ? = 4·3 = 12 различных двузначных чисел. Первая цифра вторая цифра

Правило произведения: Если элемент А можно выбрать из множества элементов п способами и для каждого такого выбора элемент В можно выбрать т способами, то два элемента (пару) А и В можно выбрать п·т способами. Gryznova A.K.

13 « Примеры решения комбинаторных задач: перебор вариантов, правило суммы, правило умножения». 1. Сколькими способами могут быть расставлены 4 участниц финального забега на четырёх беговых дорожках? Р п = 4· 3 ·2 ·1= 24 способа (перестановки из 4-х элементов) дорожка 2 дорожка 3 дорожка 4 дор. Р е ш е н о п е р е б о р о м в а р и а н т о в

14 II. Перестановки (1) К в а р т е т Проказница Мартышка, Осёл, Козёл Да косолапый Мишка Затеяли сыграть Квартет. ……………………………………………………. Ударили в смычки, дерут, а толку нет. «Стой, братцы, стой! - кричит Мартышка. – Погодите! Как музыке идти? Ведь вы не так сидите» 4·3·2·1 = 4 ! способов

15 II. Перестановки (2) Перестановкой из п - элементов называется комбинации, отличающиеся друг от друга лишь порядком следования элементов Р п - число перестановок ( Р первая буква французского слова permutation- перестановка) Р п = n · (n-1) · (n-2) · (n-3) · (n-4)·...·3 ·2 ·1= n! Р п = n! В математике принято считать 0 ! =1 и 1 ! = 1

16 Размещения (1) Четыре попутчик решили обменяться визитными карточками. Сколько всего карточек при этом было использовано? получилось 12 карточек. Каждый из четырёх попутчиков вручил визитку каждому из трёх попутчиков 4 · 3 = размещениями из Комбинации, составленные из k элементов, взятых из n элементов, и отличающиеся друг от друга либо составом, либо порядком расположения элементов, называются размещениями из n элементов по k ( 0< k n ). - размещение из n элементов по k элементов. А первая буква французского слова arrangement : «размещение», «приведение в порядок»

17 Размещения (2) Пуст имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c, d. В пустые ячейки можно по разному разместить три шара из этого набора. Выбирая по-разному первый, второй и третий шары, будем получать различные упорядоченные тройки шаров Каждая упорядоченная тройка, которую можно составить из четырёх элементов называется размещением из четырёх элементов по три dbcbacacbabc

18 Размещения (3) Сколько же размещений можно составить из 4-х элементов ( abcd ) по три? abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb Р е ш е н о п е р е б о р о м в а р и а н т о в

19 Размещения (4) Можно решить и не выписывая самих размещений: первый элемент можно выбрать четырьмя способами, так им может быть любой элемент из четырёх; для каждого первого второй можно выбрать тремя способами; для каждых первых двух можно двумя способами выбрать третий элемент из двух оставшихся. Получаем = 4·3·2 = 24 Решено с использованием п р а в и л а у м н о ж е ни я

20 Сочетания Сочетанием из п элементов по k называют любое множество, составленное из k элементов, выбранных из п элементов В отличии от размещений в сочетаниях не имеет значение порядок элементов. Два сочетания отличаются друг от друга хотя бы одним элементом

21 Р е ш и з а д а ч и: 1. На плоскости отмечено 5 точек. Сколько получится отрезков, если соединить точки попарно? 2. На окружности отмечено п точек. Сколько существует треугольников с вершинами в этих точках?

Источники информации В. Ф. Бутузов, Ю. М. Колягин, Г. Л. Луканкин, Э. Г. Позняк и др. «Математика» учебное пособие для 11 кл общеобразовательных учреждений / рекомендовано Министерством образования РФ / М., Просвещение, Е.А. Бунимович, В.А. Булычёв: «Вероятность и статистика», пособие для общеобразовательных учебных заведений 5 – 9 классы / допущено Министерством образования Российской Федерации // Дрофа Москва Ю.Н. Макарычев, Н.Г.Миндюк «Алгебра: элементы статистики и теории вероятностей 7 – 9 классы» Под редакцией С.А.Теляковского М: Просвещение, 2006 г 4. Треугольнички Остальные рисунки созданы Грязновой А.К.