6. Трансдукция – перенос генетического материала из клетки донора в клетку реципиента через трансдуцирующий бактериофаг. Последний представляет собой умеренный.

Презентация:



Advertisements
Похожие презентации
МИКРОБИОЛОГИЯ С ОСНОВАМИ ЭПИДЕМИОЛОГИИ И МЕТОДАМИ МИКРОБИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ ЛЕКЦИЯ: ГЕНЕТИКА БАКТЕРИЙ ЛЕКЦИЯ: ГЕНЕТИКА БАКТЕРИЙ Преподаватель: Лебедева.
Advertisements

Генетика микроорганизмов. Генетический материал бактерий Бактериальный геном состоит из генетических элементов, способных к самостоятельной репликации.
Генетика микробов. Наследственная информация хранится в молекуле ДНК Полимер Состоит из нуклеотидов Вид двойной спирали.
ГЕНЕТИКА МИКРООРГАНИЗМОВ. ОРГАНИЗАЦИЯ ГЕНЕТИЧЕСКОГО АППАРАТА - Бактериальный геном состоит из репликонов - РЕПЛИКОНЫ – генетические элементы, способные.
Генная инженерия. Генетическая инженерия Генетическая инжене́рия (генная инженерия) совокупность приёмов, методов и технологий получения рекомбинантных.
ОГЛАВЛЕНИЕ: История История Основные понятия Основные понятия Наследственность бактерий Наследственность бактерий Плазмиды Плазмиды Наследственность вирусов.
Беляков Вадим Щербаков Леонид. Генетическая инжене́рия (генная инженерия) совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК,
Генная Инженерия Работу выполнил ученик 10 класса – Кириллов Роман.
Генетичекий обмен у бактерий Работа студентки Рябчун Александры.
Выполнила магистрант 1 курса ИЕН группы М-БХ-18 Охотина Мария Михайловна Клонирование ДНК.
Генетическая инженерия (генная инженерия) совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма.
ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ
Выполнила : Гарипова Лилия. Генная инженерия это метод биотехнологии, который занимается исследованиями по перестройке генотипов.
Полимеразная цепная реакция Генерозова Анна, 9 класс «А»
Селекция микроорганизмов. Микроорганизмы Бактерии, микроскопические грибы, простейшие.
Информационные процессы в природе Составил Бессонов Дмитрий.
Биотехнология БИОТЕХНОЛОГИЯ БИОТЕХНОЛОГИЯ – производственное использование биологических агентов (микроорганизмы, растительные клетки, животные клетки,
Биотехнология. Что такое биотехнология Современная биотехнология –позволяет наиболее полно реализовать возможности живых организмов для производства продуктов.
Prezentacii.com. это эффективный способ получения in vitro большого числа копий специфических нуклеотидных последовательностей.
Транксрипт:

6. Трансдукция – перенос генетического материала из клетки донора в клетку реципиента через трансдуцирующий бактериофаг. Последний представляет собой умеренный фаг, который в состоянии профага получил участок ДНК от донорской клетки в результате неточного вырезания своей последовательности из генома клетки-донора. При этом бактериофаг становится дефектным, т.к. теряет часть собственной нуклеиновой кислоты. Такой фаг упаковывается в свою оболочку, выделяется из клетки и может проникать в клетку-реципиент. Этот вид рекомбинаций открыт Н. Циндером и Дж. Ледербергом в 1951 г. Различают 3 вида трансдукции: 1. Неспецифическая; 2. Специфическая; 3. Абортивная.

Неспецифическая трансдукция. При этом трансдуцирующий бактериофаг передает в реципиентную клетку любой ген донорской клетки и включает его в гомологичную область ДНК реципиента путем рекомбинации этого гена с нуклеоидом. Трансдуцирующий бактериофаг выступает лишь в роли переносчика, в нуклеоид не встраивается, и лизогенизации реципиентной культуры не происходит. Специфическая трансдукция. Здесь бактериофаг переносит строго определенный ген (или гены) от клетки донора к реципиенту и встраивает его в определенном участке ДНК реципиента путем сайт-специфической рекомбинации. В этом случае бактериофаг может встраиваться в нуклеоид клетки-реципиента, т.е. происходит лизогенизация бактерии. При этом такие клетки становятся невосприимчивыми, как и все лизогенные клетки, к последующему заражению гомологичным вирулентныйййм фагом. Обычно при специфической трансдукции переносятся бактериальные гены, сцепленные с геномом встроенного бактериофага. Чаще всего они окаймляют (фланкируют) профаг. Для E.coli и фага лямбда это гены gal и bio, контролирующие, соответственно, метаболизм галактозы и синтез витамина биотина. Абортивная трансдукция. В этом случае фрагмент ДНК донора, доставленный при трансдукции, не включается в ДНК реципиента и остается в цитоплазме. Клетка не лизогенизируется, а новый признак по мере деления клетки исчезает.

7.

8. Плазмиды внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,15 % ДНК хромосомы. Плазмиды несут гены, не обязательные для клетки-хозяина, придают бактериам дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их временные преимущества по сравнению с бесплазмидными бактериами.

Плазмиды образованы молекулами ДНК. Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки. Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства (например, устойчивость к антибиотикам) ГРУППЫ ПЛАЗМИД F-плазмиды контролируют синтез F-пилей, способствующих передачи генетического материала от бактерий-доноров (F+) к бактериам- реципиентам (F–) в процессе конъюгации R-плазмиды (от англ. resistance, устойчивость) кодируют устойчивость к лекарственным препаратам. Плазмиды патогенности контролируют вирулентныйййе свойства бактерий и токсинообразование (плазмиды включают tox+-гены). Плазмиды бактериоциногении кодируют синтез бактериоцинов - белковых продуктов, вызывающих гибель бактерий того же или близких видов

Плазмиды могут определять вирулентность бактерий, например возбудителей чумы, столбняка, способность почвенных бактерий использовать необычные источники углерода, контролировать синтез белковых антибиотикоподобных веществ бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганизмов позволяет полагать, что аналогичные структуры широко распространены у самых разнообразных микроорганизмов.

10. Генетическая инженер́риа (генная инженерриа) совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК[1]. Генетическая инженерриа не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология, вирусология.

11.Полимера́зная цепная́я реа́кция (ПЦР) экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определенных фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе) Метод основан на многократном избирательном копировании определенного участка ДНК при помощи фермента Taq- ДНК-полимеразы. Полимеразная цепнаяя реакция позволяет получить амплификаты длиной до нескольких тысяч пар нуклеотидов. Для увеличения длины ПЦР-продукта до тыс. пар нуклеотидов применяют смесь различных полимераз, но все равно это значительно меньше длины хромосомной ДНК эукариотической клетки. Реакция проводится в программируемом термостате (амплификаторе) - приборе, который может проводить достаточно быстро охлаждение и нагревание пробирок (обычно с точностью не менее 0,1 °С). Амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта» и последующего хранения. Для ПЦР в режиме реального времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы. Обычно при проведении ПЦР выполняется циклов, каждый из которых состоит из трех стадий: денатурации, отжига праймеров, элонгации (рис. 6.1 и 6.2). На рис. 6.1 представлена динамика изменения температуры в пробирке при проведении цикла ПЦР.

12. Диссоциация – это особый, присущий только бактериам вид изменчивости, при котором происходит расщепление в пределах одного вида на S- и R-формы микроорганизмов. Это явление впервые исследовали Э.Вейль и А.Феликс (1917 г.). В основу этого подразделения положены генетические перестройки, приводящие к изменению ряда свойств (культуральных, антигенных, биохимических). Так, S-формы (англ. smooth – гладкий) чаще вирулентныййй, обладают хорошо выраженными антигенными свойствами, имеют капсулу, на средах дают рост мелких блестящих колоний. R-формы (англ. rough – грубый, неровный) реже вирулентныййй, не имеют капсулы, колонии крупные, шероховатые. Однако не у всех микробов S-форма свидетельствует о вирулентности. Так сибиреязвенные культуры, возбудители туберкулеза и чумы вирулентныййй в R-форме. Диссоциация обычно протекает в одном направлении: от S- к R-форме, иногда через промежуточные стадии образования слизистых колоний. Причиной диссоциации могут быть мутации, возникающие после встраивания внехромосомных факторов наследственности (эписом и умеренных фагов) в нуклеоид. Мутации сопровождают и процессы встраивания в нуклеоид транспозонов и инсерционных последовательностей. Если эти мутации нарушают функцию оперонов, которые отвечают за образование липополисахаридов клеточной стенки микроба, то образуются R-формы. Они дают шероховатые колонии, меняют антигенные свойства и ослабляют патогенность. Тем не менее, у дифтерийных бактерий S-R- диссоциация связана с их лизогенизацией бактериофагом; при этом R-формы образуют токсин, и их вирулентность резко увеличивается. Значение диссоциации заключается в получении бактериами селективных преимуществ, обеспечивающих их существование в организме человека или во внешней среде. Например, S-формы более устойчивы к фагоцитозу. R-формы, в свою очередь, более устойчивы к факторам окружающей среды.