тригономе́трия (от греч.τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические.

Презентация:



Advertisements
Похожие презентации
Тригономе́трия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические.
Advertisements

Учитель математики МБОУ СОШ 66 Шумакова Л.Г.. Тригономе́три я (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников)
История тригонометрии Работа учителя ГОУ СОШ 1315 Мирсалимовой Е.Н.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
Тригономе́трия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические.
Тригонометрия 8 класс
Работу выполнили : Никониров Иван Шахнович Егор. Тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника.
Тригонометрические выражения и их преобразования. 9 -класс МБОУ-ООШ 25 Подготовила: учитель математики Оганесян Валентина Ашотовна Оганесян Валентина Ашотовна.
Рымарь Л.Р.,МБОУ «СОШ 1» г.Бийск. Определение 1. Если даны числовое множество X и правило f, позволяющее поставить в соответствие каждому элементу x из.
Тригонометрические функции. Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника 1) Синус - отношение.
Тригонометрические функции.
История возникновения и развития тригонометрии. Авторы проекта учащиеся 10 «А» кл МОУ «СОШ 75» : Вильдяева Екатерина, Кочеткова Анастасия, Худошина Анастасия.
Работу выполнил: Субботин Антон Ученик 10 класса МБОУ «Тирянская СОШ»
Урок по теме:Тригонометрические формулы. Ельцова Н.Г.,учитель МОУ «Гимназия 11», Г Норильск.
Историческая справка Тригонометрия. Тригонометрия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел.
Подготовила ученица 10 класса «А» ГОУ СОШ 1242 ЮАО г. Москвы Базякина Ирина.
Тригонометрические функции любого угла. Тригонометрические функции любого угла. Определения синуса, косинуса, тангенса и котангенса. Геометрия 9 класс.
Алгебра и начала анализа Колмогоров А.Н. Алгебра и начала анализа 10 – 11
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ЧИСЛОВОГО АРГУМЕНТА. Угол в 1 радиан это такой центральный угол, длина дуги ко­ торого равна радиусу окружности. Радианная.
Транксрипт:

тригономе́трия (от греч.τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика БартоломеусаПитискуса (BartholomäusPitiscus, ), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

sin cos 0 π π 2 3π23π

Тригонометрический круг построенная на плоскости с прямоугольными декартовыми координатами окружность, имеющая центр в точке начала координат и единичный радиус, т.е. единичная окружность, которая используется для геометрического определения тригонометрических функций. Название «тригонометрический круг» не совсем удачно, поскольку речь идёт об окружности, а не о круге; тем не менее, часто используется именно это название.

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.

Тригонометрические тождества математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента

ФОРМУЛА ДОПУСТИМЫЕ ЗНАЧЕНИЯ АРГУМЕНТА НОМЕР (1) (2) (3)

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем: Это соотношение называется основным тригонометрическим тождеством. Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

Синус и косинус непрерывные функции. Тангенс и секанс имеют точки разрыва котангенс и косеканс

Косинус и секанс чётные. Остальные четыре функции нечётные, то есть:

Функции периодические с периодом 2π, функции y= сtg x и y= tg x c периодом π.

Тригонометри́ческие фу́нкции элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что эквивалентно, зависимость хорд и высот от центрального угла в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

: К тригонометрическим функциям относятся: во-первых, прямые тригонометрические функции синус (sin x), косинус (cos x); во-вторых, противоположные им тригонометрические функции: секанс (sec x) косеканс (cosec x); и, в-третьих, производные тригонометрические функции: тангенс (tg x), котангенс (ctg x).

Первоначально тригонометрические функции были связаны с соотношениями сторон в прямоугольном треугольнике. Их единственным аргументом является угол (один из острых углов этого треугольника). Синус отношение противолежащего катета к гипотенузе. Косинус отношение прилежащего катета к гипотенузе. Тангенс отношение противолежащего катета к прилежащему. Котангенс отношение прилежащего катета к противолежащему. Секанс отношение гипотенузы к прилежащему катету. Косеканс отношение гипотенузы к противолежащему катету.

Sin α Cos α Sec α Cosec α Tg α Ctg α

Данные определения позволяют вычислить значения функций для острых углов, то есть от 0° до 90° (от 0 до радиан). В XVIII веке Леонард Эйлер дал современные, более общие определения, расширив область определения этих функций на всю числовую ось. Рассмотрим в прямоугольной системе координат окружность единичного радиуса и отложим от горизонтальной оси угол θ (если величина угла положительна, то откладываем против часовой стрелки, иначе по часовой стрелке). Точку пересечения построенной стороны угла с окружностью обозначим A. Тогда: Синус угла θ определяется как ордината точки A. Косинус абсцисса точки A. Тангенс отношение синуса к косинусу. Котангенс отношение косинуса к синусу (то есть величина, обратная тангенсу). Секанс величина, обратная косинусу. Косеканс величина, обратная синусу.

Синус и косинус вещественного аргумента являются периодическими непрерывными и неограниченно дифференцируемыми вещественнозначными функциями. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и неограниченно дифференцируемые на области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках ±πn + π/2, а котангенс и косеканс в точках ±πn.

Обычно тригонометрические функции определяются геометрически. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса R с центром в начале координат O. Измерим углы как повороты от положительного направления оси абсцисс до луча OB. Направление против часовой стрелки считается положительным, по часовой стрелке отрицательным. Абсциссу точки В обозначим xB, ординату обозначим yB

Синусом называется отношение Косинусом называется отношение Тангенс определяется как Котангенс определяется как Определение тригонометрических функций Косеканс определяется как Секанс определяется как

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности R в силу свойств подобных фигур. Часто этот радиус принимают равным величине единичного отрезка, тогда синус равен просто ординате yB, а косинус абсциссе xB.

Во многих учебниках элементарной геометрии до настоящего времени тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB треугольник с углом α. Тогда: Синусом угла α называется отношение AB/OB (отношение противолежащего катета к гипотенузе). Косинусом угла α называется отношение ОА/OB (отношение прилежащего катета к гипотенузе). Тангенсом угла α называется отношение AB/OA (отношение противолежащего катета к прилежащему). Котангенсом угла α называется отношение ОА/AB (отношение прилежащего катета к противолежащему). Секансом угла α называется отношение ОB/OA (отношение гипотенузы к прилежащему катету). Косекансом угла α называется отношение ОB/AB (отношение гипотенузы к противолежащему катету).

Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решение дифференциального уравнения с начальными условиями то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

Функции косинус и синус можно определить как непрерывные решения (f и g соответственно) системы функциональных уравнений:

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде суммы степенны́х рядов:

Пользуясь этими формулами, а также уравнениями можно найти разложения в ряд Тейлора и других тригонометрических функций: где Bn числа Бернулли, En числа Эйлера.

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («N/A» означает, что это значение не определено). Значения косинуса и синуса на окружности.

α

Формулами приведения называются формулы следующего вида: Здесь f любая тригонометрическая функция, g соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса и аналогично для остальных функций), n целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:

Аналогичные формулы для суммы трёх углов:

Формулы для произведений функций двух углов:

Для функций от аргумента x существует представление: где угол ϕ находится из соотношений:

Все тригонометрические функции можно выразить через тангенс половинного угла.

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

Формула Эйлера: позволяет определить тригонометрические функции от комплексных аргументов через экспоненту или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

Соответственно, для вещественного x,

Комплексные синус и косинус тесно связаны с гиперболическими функциями: Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства: комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения; все нули комплексных синуса и косинуса лежат на вещественной оси.

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный ноль). Цвет изменяется от аргумента и угла согласно карте

Графики тригонометрических функций: синуса, косинуса, тангенса, котангенса, секанса, косеканса

Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций: аркси́нус (обозначение: arcsin) аркко́синус (обозначение: arccos) аркта́нгенс (обозначение: arctg; в иностранной литературе arctan) арккота́нгенс (обозначение: arcctg; в иностранной литературе arccot или arccotan) арксе́канс (обозначение: arcsec) арккосе́канс (обозначение: arccosec; в иностранной литературе arccsc)

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arc дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Изредка в иностранной литературе пользуются обозначениями типа sin1 для арксинуса и т. п.; это считается не совсем корректным, так как возможна путаница с возведением функции в степень 1.

Основное соотношение

Арксинусом числа m называется такое значение угла x, для которого Функция y = sin x непрерывна и ограничена на всей своей числовой прямой. Функция y = arcsinx является строго возрастающей.

при (область определения), (область значений).

(функция является нечётной). При при x = 0. При

Дана функция y = sin x. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие y = arcsinx функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго возрастает и принимает все значения области значений Так как для функции y = sin x на интервале каждому значению аргумента соответствует единственное значение функции, то на этом отрезке существует обратная функция y = arcsin x, график которой симметричен графику функции y = sin x на отрезке относительно прямой y = x.

Арккосинусом числа m называется такое значение угла x, для которого

cos(arccos x) = x при arccos(cos y) = y при D(arccos x) = [ 1;1], (область определения), E(arccos x) = [0;π]. (область значений).

(функция центрально-симметрична относительно точки при При

Дана функция y = cos x. На всей своей области определения она является кусочно- монотонной, и, значит, обратное соответствие y = arccos x функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго убывает и принимает все свои значения [0;π]. На этом отрезке y = cos x строго монотонно убывает и принимает все свои значения только один раз, а значит, на отрезке [0;π] существует обратная функция y = arccos x, график которой симметричен графику y = cos x на отрезке [0;π] относительно прямой y = x.

Арктангенсом числа m называется такое значение угла α, для которого Функция и ограничена на всей является строго возрастающей.своей числовой прямой. Функция является строго возрастающей. При При

Дана функция На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим отрезок, на котором она строго возрастает и принимает все свои значения только один раз _ На этом отрезке строго монотонно возрастает и принимает все свои значения только один раз, следовательно, на интервале существует обратная график которой симметричен графику на отрезке относительно прямой y = x.

Арккотангенсом числа m называется такое значение угла x, для которого Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго убывающей. При При 0 < y < π,

(график функции центрально- симметричен относительно точки при любых х.

Дана функция. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим отрезок, на котором она строго убывает и принимает все свои значения только один раз (0;π). На этом отрезке строго убывает и принимает все свои значения только один раз, следовательно, на интервале (0;π) существует обратная функция, график которой симметричен графику на отрезке (0;π) относительно прямой y = x. График симметричен к арктангенсу

Неопределённые интегралы Для действительных и комплексных x:

Для действительных x 1:

Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например с помощью теоремы косинусов.

В прямоугольном треугольнике, эти функции от отношений сторон сразу дают угол: α = arcsin (a/c) = arccos (b/c) = arctg (a/b) = arccosec (c/a) = arcsec (c/b) = arcctg (b/a) Прямоугольный треугольник ABC Решение простейших тригонометрических уравнений

sin x = a. Если | a | > 1 вещественных решений нет. Если решением является число вида cos x = a. Если | a | > 1 решений нет. Если решением является число вида

Решением является число вида

Тождества имеют смысл, только когда существуют обе части (то есть при ).

Редко используемые тригонометрические функции функции угла, которые в настоящее время используются редко по сравнению с шестью основными тригонометрическими функциями (синусом, косинусом, тангенсом, котангенсом, секансом и косекансом). К ним относятся:

Определение тригонометрических функций через окружность. Отрезки CD и DE описывают соответственно версинус и эксеканс. Синус-верзус (другие написания: версинус, синус версус, называется также «стрелка дуги»). Определяется как Представляет собой расстояние от центральной точки дуги, измеряемой удвоенным данным углом, до центральной точки хорды, стягивающей дугу. Иногда используются обозначения C ним связаны ещё несколько функций: Косинус-верзус (другие написания: коверсинус, косинус версус). Определяется как Иногда используются обозначения

Гаверсинус (англ. haversinus, сокращениеот half the versed sine).Определяется как Используется также обозначение Эксеканс (англ. exsecant) или экссеканс. Определяется как Экскосеканс дополнительная функция к эксекансу:

Версинус, коверсинус и гаверсинус были удобны для ручных расчётов с использованием логарифмов, поскольку они всюду неотрицательны, однако в связи с развитием вычислительных средств эта область применения неактуальна. В настоящее время эти функции используются для описания соответствующих сигналов в электронике (например, в функциональных генераторах). Гаверсинус также используется в навигационных расчётах для избежания ошибок округления в вычислительных системах с ограниченной разрядностью.

Графики версинуса, коверсинуса и гаверсинуса

Рассуждая аналогичным образом, делаем вывод, что на единичной окружности можно найти и точку Ег, для которой АЕ, = 1, и точку Е2, для которой АЕг = 2, и точку Е3, для которой АЕ3 = 3, и точку Е4, для которой АЕ4 = 4, и точку Еь, для которой АЕЪ = 5, и точку Е6, для которой АЕ6 = 6. На рис. 102 отмечены (приблизительно) соответствующие точки (причем для ориентировки каждая из четвертей единичной окружности разделена черточками на три равные части).

Пример. Найти на числовой окружности точку, соответствующую числу -7. Решение. Нам нужно, отправляясь из точки А(0) и двигаясь в отрицательном направлении (в направлении по часовой стрелке), пройти по окружности путь длиной 7. Если пройти одну окружность, то получим (приближенно) 6,28, значит, нужно еще пройти (в том же направлении) путь длиной 0,72. Что же это за дуга? Немного меньше половины четверти окружности, т.е. ее длина меньше числа.