Химия Для студентов I курса специальностей: 2080165 экология, 08040165 товароведение и экспертиза товаров, 260800 технология, конструирование изделий и.

Презентация:



Advertisements
Похожие презентации
Азотсодержащие органические соединения.. Амины Амины – органические соединения, которые можно рассматривать как производные аммиака, в котором атомы водорода.
Advertisements

Азотсодержащие соединения 2 Нитросоединения Нитрозосоединения Гидроксиламины.
Аминокислоты Производные карбоновых кислот, содержащие в своем составе одну или несколько аминогрупп. N H 2 – C H – C O O H R.
9 класс Урок 8. Аминокислоты. Белки. Составитель презентации – учитель химии МОУ СОШ г. Холма Насонова Т.А.
Аминокислоты Учитель химии МОУ Уральская СОШ Нурманова М.О С.Уральское.
Амины Разнообразие азотсодержащих органических веществ. Азотсодержащие вещества Амины R – NH 2 Нитросоединения R – NO 2 Аминокислоты NH 2 - R - COOH Белки.
Аминокислоты. Белки Лектор: асис. М.В. Чорная. Аминокислоты Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные.
Амины. Анилин. Учитель химии МБОУ СОШ 20 г.Королева Московской области Баранова Ирина Александровна.
Урок на тему:. Дать понятие об аминах, их классификации, изомерии, номенклатуре и свойствах в сравнении с аммиаком. Дать понятие об аминах, их классификации,
Химия Для студентов I курса специальностей: экология, товароведение и экспертиза товаров, технология, конструирование изделий и.
Амины Амины – производные аммиака, в молекуле которого один или несколько атомов водорода замещены на углеводородные радикалы. NH H H NH R H NR/R/ H R.
Повторительно – обобщающий урок на тему : «Белки» Задача выполнена, если химическая сторона мира вошла в круг наших понятий.
Амины. Понятие об аминах. Анилин как органическое основание. Применение анилина на основе свойств. МБОУ СОШ 99 г.о. Самара Предмет: Химия Класс: 10 Учебник:
Девиз урока «Человек должен верить, что непонятное можно понять» И.Гёте И.Гёте.
Химия Для студентов I курса специальностей: экология, товароведение и экспертиза товаров, технология, конструирование изделий и.
Аминокислоты – соединения, которые обязательно содержат две функциональные группы: аминогруппу – NH 2 и карбоксильную группу – COOH, связанные с углеводородным.
Химия Для студентов I курса специальностей: экология, товароведение и экспертиза товаров, технология, конструирование изделий и.
Государственное бюджетное образовательное учреждение высшего профессионального образования «Красноярский государственный медицинский университет имени.
АМИНЫ АМИНЫ Составитель : И. Н. Пиялкина, учитель химии МБОУ СОШ 37 города Белово.
третичные Триметиламин CH 3 -N- CH 3 CH 3 азотсодержащие органические соединения производные аммиака, в молекуле которого один, два или три атома водорода.
Транксрипт:

Химия Для студентов I курса специальностей: экология, товароведение и экспертиза товаров, технология, конструирование изделий и материалы легкой промышленности ИИИБС, кафедра ЭПП к.х.н., доцент А. Н. Саверченко

АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ К азотсодержащим органическим соединениям относят многочисленные органические соединения, как природного происхождения, так и синтетические, в молекулах которых содержатся атомы азота. К ним относятся белковые вещества, многие важнейшие физиологически активные соединения, полимерные материалы, красители, лекарственные препараты.

Студент должен: знать стоение, номенклатуру, свойства, способы получения и применение азотсодержащих производных углеводородов умень составлять названия и химические уравнения реакций азотсодержащих производных углеводородов

В настоящем лабораторном практикуме рассмотрены те азотсодержащие органические соединения, в молекулах которых атом азота непосредственно связан с атомом углерода: амины, аминокислоты, белковые вещества, диазо- и азосоединения.

Амины алифатического ряда Амины - органические соединения, которые можно рассматривать как производные углеводородов, образованные в результате замещения атомов водорода в углеводородной молекуле остатками аммиака (аминогруппами). Амины рассматривают и как производные аммиака, в котором атомы водорода замещены углеводородными радикалами R – H NH 3 R – NH 2 углеводород аммиак амин

Так как в аммиаке радикалами могут быть последовательно замещены все водородные атомы, существуют три группы аминов. Амины, в которых азот соединен с одним радикалом, называются первичными, с двумя радикалами – вторичными и с тремя радикалами – третичными R R | | R – NH 2 R – NH R – N – R первичный вторичный третичный амин амин амин

Амины могут содержать одну, две и более аминогрупп, соответственно различают моноамины, диамины и т.д. Следует иметь в виду, что диамины с двумя аминогруппами при одном углеродном атоме не существуют. Поэтому простейшим диамином является этилендиамин, содержащий две аминогруппы при различных углеродных атомах: NH 2 – CH 2 – CH 2 – NH 2 этилендиамин (1,2 - этандиамин)

С аминами тесно связаны органические вещества, являющиеся производными аммониевых соединений. Производные гидроксида аммония, содержащие в комплексном аммониевом катионе вместо атомов водорода радикалы, называют гидроксидами замещенного аммония; соединения, содержащие ион четырехзамещенного аммония, в котором с азотом вместо всех четырех атомов водорода связаны четыре радикала, называют четвертичными аммониевыми основаниями:

[NH 4 ] + OH - гидроксид аммония гидроксид четырехзамещенного аммония (четвертичное аммониевое основание)

При замещении радикалами атомов водорода в аммониевых солях образуются соли замещенного аммония, например: [NH 4 ] Cl хлорид аммония хлорид четырехзамещенного (соль аммония) аммония (соль четвертичного аммониевого основания)

Номенклатура аминов По правилам Международной номенклатуры, если аминогруппа в соединении является главной, наличие ее обозначают окончанием – амин; когда имеется несколько таких групп, используют окончание с греческими числительными –диамин, триамин и т.д.

Для наименования первичных аминов или диаминов с первичными аминогруппами указанные окончания добавляются к названиям соответствующих одновалентных или двухвалентных радикалов: CH 3 | CH 3 – NH 2 CH 3 – CH – NH 2 метиламин изопропиламин CH 2 – CH 2 – CH 2 – CH 2 | | NH 2 NH 2 тетраметилендиамин

Названия аминов могут быть произведены и от заместительных названий соответствующих углеводородов, тогда цифрами указывают атомы углерода главной цепи, связанные с аминогруппой. Например CH CH 3 CH CH 2 CH CH 3 NH 2 4-метил-2-пентанамин

Названия вторичных и третичных аминов с одинаковыми радикалами образуются из названий этих радикалов и указывающих их число греческих числительных. Например: CH 2 CH 3 СH 3 NH CH 3 CH 3 CH 2 N CH 2 CH 3 диметиламин триэтиламин

Название соединений, содержащих ион замещенного аммония составляют из наименований радикалов: CH 3 CH 3 CH 3 N + CH 3 OH - CH 3 N + CH 3 Cl - CH 3 C 2 H 5 гидроксид хлорид тетраметиламмония диметилэтиламмония

Химические свойства Как производные аммиака амины проявляют основные свойства и являются органическими основаниями. Подобно аммиаку амины с водой образуют катионы замещенного аммония и гидроксильные анионы: + CH 3 NH 2 + HOH CH 3 NH 3 + OH ¯ метиламин ион метиламина

Водные растворы аминов можно представить как растворы гидроксидов замещенного аммония; в случае метиламина – гидроксида метиламмония CH 3 NH 3 OH. Они имеют щелочную реакцию и окрашивают лакмус в синий цвет.

Под влиянием простейших алкильных радикалов основные свойства аминогруппы увеличиваются, поэтому амины жирного ряда являются более сильными основаниями, чем аммиак. Особенно сильные основные свойства проявляют четвертичные аммониевые основания.

Увеличение основных свойств аминогруппы в аминах сравнительно с аммиаком объясняется электронодонорными свойствами алкильных радикалов, их способностью отталкивать электроны связей, соединяющих их с другими атомами или группами: CH 3 N H CH 3 N H H CH 3 метиламин диметиламин

Алкилы увеличивают общую электронную плотность атома азота, несущего неподеленную электронную пару, и, следовательно, его способность присоединять протон. Как основание аммиак с кислотами дает соли аммония. Аналогично проявляются основные свойства аминов. Например:

CH 3 NH 2 + HCl CH 3 NH 3 Cl метиламин хлорид метиламмония CH 3 NH 2 + H 2 SO 4 CH 3 NH 3 SO 4 2 сульфат метиламмония

Едкие щелочи, как более сильные основания, вытесняют амины из их солей. CH 3 NH 3 Cl + NaOH CH 3 NH 2 + H 2 O + NaCl метиламин Реакция ускоряется при нагревании.

Реакции аминов с азотистой кислотой При действии азотистой кислоты (HNO 2 ) на первичные амины выделяются газообразный азот и вода и образуется спирт: R N H 2 + O = N OH R OH + N 2 + H 2 O первичный азотистая спирт амин кислота Например: CH 3 N H 2 + O = N OH CH 3 OH + N 2 +H 2 O метиламин метанол

Вторичные амины при действии на них азотистой кислоты образуют нитрозамины: R R N H + HO N = О N = N = О + H 2 O R R вторичный азотистая нитрозамин амин кислота

Например: CH 3 CH 3 N H + HO N = О N N = О +H 2 O CH 3 CH 3 диметиламин диметилнитрозамин Третичные амины, в которых при азоте нет водорода, не реагируют с азотистой кислотой.

Аминокислоты Аминокислотами называют карбоновые кислоты, в углеводородных радикалах которых один или несколько атомов водорода замещены остатками аммиака - аминогруппами. Чаще всего атомы водорода замещаются на первичные аминогруппы. Тогда в общем виде строение аминокислот выражается формулой H 2 N R COOH. Поскольку в аминокислотах находятся различные функциональные группы, они являются соединениями со смешанными функциями.

Строение, изомерия и номенкулатура Изомерия аминокислот определяется положением аминогрупп по отношению к карбоксильным группам; строением углеродного скелета и наличием асимметрических углеродных атомов. Названия аминокислот, поскольку в них главной функциональной группой является карбоксил, выводят из тривиальных или систематических названий соответствующих по углеродному скелету незамещенных кислот, добавляя к ним приставку амино-; положение аминогруппы по отношению к карбоксилу обозначают либо буквами греческого алфавита, либо цифрами. Для аминокислот общеприняты тривиальные названия.

Простейшей является аминоуксусная (аминоэтановая) кислота; иначе ее называют глицином или гликоколом: CH 3 COOH H 2 N CH 2 COOH уксусная аминоуксусная кислота кислота (глицин, гликокол)

Химические свойства Вследствие наличия в молекулах аминокислот одновременно карбоксильных и аминогрупп они могут реагировать как кислоты и как амины. Некоторые же свойства аминокислот являются результатом взаимного влияния и взаимодействия карбоксильных групп и аминогрупп.

Амфотерность аминокислот Аминокислоты – амфотерные соединения, образующие соли как с кислотами, так и с основаниями. В первом случае в реакции участвует аминогруппа, во втором – карбоксильная группа. NH 2 CH 2 COOH + HCl N + H 3 CH 2 COOH Cl ¯ глицин хлороводородная соль глицина

NH 2 CH 2 COOH + NaOH NH 2 CH 2 COONa + H 2 O натриевая соль глицина

Кислотная и основная группы внутри молекул аминокислот взаимодействуют друг с другом, благодаря этому молекулы аминокислот представляют собой биполярные ионы. Поэтому, например, водные растворы одноосновных моноаминокислот нейтральны. Для глицина это можно представить следующей схемой:

CH 2 COOH CH 2 COO ¯ NH 2 + NH 3 глицин внутренняя соль глицина Характерной особенностью аминокислот является способность к образованию внутрикомплексных солей с тяжелыми металлами.

Реакции аминогрупп в аминокислотах Аминокислоты с первичными аминогруппами реагируют с азотистой кислотой подобно первичным аминам. СH 3 CH COOH + HO N = O NH 2 α-аминопропионовая кислота CH 3 CH COOH+ N 2 + H 2 O OH α-гидроксипропионовая кислота

Функциональные производные аминокислот Подобно незамещенным карбоновым кислотам, аминокислоты за счет карбоксильной группы образуют различные производные: сложные эфиры, галогенангидриды, амиды и т.п. Например: O O O C OH C OC 2 H 5 C NH 2 CH 2 NH 2 CH 2 NH 2 CH 2 NH 2 глицин сложный эфир амид глицина глицина

Отличительные свойства α, β, γ и δ-аминокислот Различное взаимное расположение аминогрупп и карбоксильных групп в молекулах аминокислот придает последним некоторые отличительные свойства. Например, молекулы α-аминокислоты в особых условиях могут реагировать друг с другом, образуя ациклические соединения типа амидов, называемые пептидами. Из двух молекул α-аминокислоты образуются дипептиды. Например:

H 2 N CH C OH + H NH CH C OH CH 3 O CH 3 O аланин аланин H 2 N CH C NH CH C OH + H 2 O CH 3 O CH 3 O дипептид

Таким же путем из многих аминокислотных молекул получают полипептиды. Образование полипептидов из α- аминокислот лежит в основе синтеза белковых веществ в организмах.

Белковые вещества. Белковые вещества, или белки, представляют собой природные высокомолекулярные азотсодержащие органические соединения, очень сложные молекулы которых построены из остатков α-аминокислот. Значение белков в природе исключительно велико, так как эти вещества играют первостепенную роль во всех явлениях жизни. Белки широко распространены в природе. Особенно много их содержат организмы животных и человека. Огромное значении белки имеют и для жизнедеятельности растительных организмов.

В природе существует огромное множество различных белков. Они различаются по молекулярной массе, свойствам и той роли, которую играют в различных природных процессах. Очень часто белковые вещества представляют собой сложные смеси различных белков. Элементный состав белков непостоянен. Все они содержат углерод (50-55%), водород (6,5-7,3%), кислород (21,5-23,5) и азот (15-18%), в состав многих входит сера (0,3-2,5%), некоторые содержат фосфор, железо, йод, медь.

При нагревании с кислотами или со щелочами, а также при обычных температурах под действием специальных ферментов белки расщепляются, подвергаясь гидролизу, т.е. разложению водой. Главными продуктами полного гидролиза белков являются смеси α- аминокислот. Из белковых гидролизатов выделено свыше 20 различных α- аминокислот. Именно α-аминокислоты, входящие в состав белков, определяют их пищевую ценность.

Каждый организм из аминокислот, получаемых с белками пищи, синтезирует свои, необходимые ему белки. При этом из 20 белков α-аминокислот наиболее важны восемь, которые называют незаменимыми аминокислотами; они поступают только с пищей и не могут образовываться в организме из остальных аминокислот или из других азотистых соединений. Остальные α- аминокислоты белков называются заменимыми – отсутствие или недостаток этих кислот в пище организм компенсирует, синтезируя их из других аминокислот или из иных азотистых соединений.

Строение белков. Различные α-аминокислоты, образуя белки, соединяются за счет аминогрупп и карбоксильных групп при помощи группировки CO NH, названной пептидной связью. В белковых молекулах имеются полипептидные цепи. Если строение α-аминокислот представить общей формулой (I), то образование полипептидной цепи (II) можно изобразить схемой

nH 2 N CH C OH R O α-аминокислоты (I) H 2 N CH C NH CH C NH CH C NH C OH R O R O R O m O полипептидная цепь белковой молекулы (II)

Таким образом, белки, являющиеся природными высокомолекулярными соединениями, представляют собой продукты поликонденсации α-аминокислот. Полипептидные цепи белков строятся из десятков и сотен молекул, причем не одной, а различных аминокислот. Образуя цепь, они могут соединяться друг с другом в различной последовательности, что приводит к огромному многообразию комбинаций аминокислотных остатков в полипептидных цепях.

Природа белка определяется не только тем, какие аминокислоты входят в его состав, но особенно и тем, в какой последовательности они соединяются друг с другом. Последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой белка. Она строго специфична для белков каждого индивидуального организма.

Большое значение имеет образование между полипептидными цепями белков или между отдельными участками таких цепей водородных и дисульфидных связей. Возникновение такого рода связей внутриполипептидных цепей также приводит к замыканию их в циклы различных размеров, к скручиванию, к образованию складок.

Характерная особенность полипептидных цепей многих белков – склонность закручиваться в спираль. Между отдельными витками спирали образуются внутримолекулярные водородные связи, придающие ей устойчивость. В некоторых белках полипептидные цепи могут иметь так называемую β-форму, которая стабилизируется межмолекулярными водородными связями, соединяющими в своеобразные нити разные цепи. α- спиральная и нитевидная β-формы полипептидных цепей являются вторичной структурой белка.

Спирали и нити вторичной структуры, а также неупорядоченные участки полипептидных цепей могут различным способом сгибаться и складываться, образуя своеобразные «клубки»; таким образом создается третичная структура белка. Она стабилизируется внутримолекулярными взаимодействиями различного типа. Несколько «клубков» третичной структуры в некоторых белках ассоциируются, образуя еще более сложную четвертичную структуру белка.

Свойства белков. Белки – высокомолекулярные соединения. Некоторые из них обладают молекулярными массами порядка десятков ( ), другие сотен ( ) тысяч. Молекулярная масса отдельных белков достигает нескольких миллионов. Белковые вещества разнообразны по своему агрегатному состоянию.

Все белки нерастворимы в безводном спирте и других органических растворителях. Многие белки растворяются в воде и в разбавленных растворах солей, образуя коллоидные растворы. Имеются и белки, совершенно не растворяющиеся в воде. Белки, подобно аминокислотам, амфотерны и образуют соли как с кислотами, так и с основаниями. В их полипептидных цепях имеются свободные карбоксильные группы и аминогруппы.

Наличие различных функциональных групп в боковых ответвлениях полипептидных цепей придает белкам способность вступать во множество реакций; этим объясняется огромная роль белков в химических процессах, протекающих в организмах и осуществляющих явления жизни. Для всех белков характерны некоторые общие свойства: осаждение из растворов и цветные реакции.

Осаждение белков из растворов. При добавлении к водным растворам белков концентрированных растворов минеральных солей (например, сульфата аммония) белки осаждаются (высаливаются). Осаждение их происходит и при добавлении органических растворителей (спирта, ацетона). Во всех этих случаях белки не изменяют своих свойств и при разбавлении водой вновь переходят в раствор.

Другие реагенты – соли тяжелых металлов (сульфат меди, ацетат свинца), а также кислоты (азотная, уксусная, пикриновая, трихлоруксусная) вызывают необратимое осаждение белков; под их воздействием происходит значительное изменение свойств (денатурация) белков, и они после осаждения теряют способность растворяться в воде и в разбавленных солевых растворах. При нагревании многие белки также денатурируются – свертываются (например, яичный белок) и осаждаются из растворов, теряя способность растворяться в воде.

Цветные реакции белков. Биуретовая реакция. При взаимодействии в щелочной среде с солями меди (CuSO 4 ) все белки дают фиолетовое (при сильном разбавлении сиреневое) окрашивание. Аналогичную реакцию дает уже упомянутый ранее биурет NH 2 CO NH CO NH 2, откуда происходит название этой реакции. В биурете имеются две пептидные группировки CO NH, которые и обуславливают появление окраски при взаимодействии с солями меди.

Таким образом, биуретовая реакция белков подтверждает наличие в их молекулах пептидных связей. Эту реакцию дают и полипептиды, образующиеся при гидролизе белков. При этом окраска, возникающая при взаимодействии с солями меди, для различных полипептидов не одинакова: дипептиды дают синюю окраску, трипептиды – фиолетовую, а более сложные полипептиды – красную.

Ксантопротеиновая реакция. Если белки или их растворы нагревают с концентрированной азотной кислотой, они окрашиваются в желтый цвет. Реакция объясняется наличием в белках аминокислот, содержащих группировки ароматических соединений. За счет этих группировок при взаимодействии с азотной кислотой образуются ароматические нитросоединения, окрашенные в желтый цвет.

Например, если в полипептидной цепи белка имеется звено фенилаланина, реакцию можно представить схемой: …HN CH CO… …NH CH CO … CH 2 C 6 H 5 CH 2 C 6 H 4 NO 2 звено фенилаланина нитросоединение

В отличие от биуретовой реакции ксантопротеиновую реакцию дают не все белки, поскольку в некоторых из них может и не быть α-аминокислот, содержащих группировки ароматических соединений.

Классификация белков. Среди белков различают две основные группы веществ: а) протеины, или простые белки, состоящие только из аминокислот и при гидролизе почти не образующие других продуктов; б) протеиды, или сложные белки, состоящие из собственно белковой части, построенной из α-аминокислот, и из соединенной с ней небелковой части, иначе называемой простетической группой; при гидролизе эти белки кроме α-аминокислот образуют и другие вещества: углеводы, фосфорную кислоту, гетероциклические соединения и т.п.

Среди протеинов выделяют несколько подгрупп, отличающихся преимущественно по растворимости. Протеиды подразделяют на подгруппы в зависимости от характера простетической группы, отщепляющейся при гидролизе от собственно белковой части.

Белковые вещества классифицируются также по форме их молекул: а) фибриллярные (волокнистые) белки, молекулы которых имеют нитевидную форму; к ним относят фиброин шелка, кератин шерсти; б) глобулярные белки, молекулы которых имеют округлую форму; к ним относятся, например, альбумины, глобулины и ряд других, в том числе и сложные белки.

Ароматические амины Производные ароматических углеводородов, содержащие в бензольном ядре взамен атома водорода остаток аммиака – аминогруппу, представляют собой ароматические амины. Подобно аминам жирного ряда, ароматические амины можно рассматривать как производные аммиака, в котором атомы водорода замещены углеводородными радикалами, но, по крайней мере, один из этих радикалов является ароматическим.

Номенклатура и изомерия Для многих ароматических аминов употребительны тривиальные названия. Простейший ароматический амин – производное бензола – анилин: C 6 H 5 NH 2 или NH 2 анилин (фениламин) Систематическое название анилина фениламин (фенил – одновалентный радикал бензола).

Простейшими гомологами анилина являются аминопроизводные толуола CH 3 C 6 H 4 NH 2, называемые толуидинами; они существуют в виде орто-, мета- и пара-изомеров: CH 3 CH 3 CH 3 NH 2 о-толуидин м- толуидин n- толуидин (о-толиламин) (м-толиламин) (n-толиламин)

Толуидины по названию радикалов толуола можно назвать о-, м- и n-толиламинами. Ароматические амины, в которых, как в анилине, толуидинах, азот аминогруппы соединен только с одним ароматическим радикалом, являются первичными аминами; вторичные и третичные амины содержат в соединении с азотом соответственно два или три радикала и могут быть двух типов:

а) жирно-ароматические – содержат в соединении с азотом не только ароматический, но и алкильные радикалы, например: CH 3 NH CH 3 N CH 3 N- метиламин N,N - диметиланилин (вторичный амин) (третичный амин)

б) чисто ароматические амины – в них азот связан только с ароматическими радикалами, например: NH N дифениламин трифениламин (вторичный амин) (третичный амин)

Химические свойства Реакции за счет аминогруппы Подобно аминам жирного ряда, ароматические амины проявляют свойства оснований и с кислотами образуют соли замещенного аммония. Например: C 6 H 5 NH 2 + HCl [ C 6 H 5 NH 3 ] Cl хлорид фениламмония C 6 H 5 NH 2 + H 2 SO 4 [ C 6 H 5 NH 3 ] 2 SO 4 сульфат фениламмония

Основные свойства у ароматических аминов гораздо менее выражены, чем у аминов жирного ряда, что объясняется влиянием бензольного кольца. Водный раствор анилина C 6 H 5 NH 2 не показывает щелочной реакции на лакмус. Его соли с соляной или серной кислотой сильно гидролизуются, растворы этих солей в воде имеют кислую реакцию и окрашивают лакмус в красный цвет, так как они представляют собой растворы солей слабых оснований и сильных кислот.

Реакции с азотистой кислотой Первичные ароматические амины в реакции с азотистой кислотой (HNO 2 ) отличаются от первичных аминов жирного ряда. Если на соль первичного ароматического амина подействовать на холоду азотистой кислотой, то образуется диазосоединение + + NH 3 Cl¯+ O = N OH N N Cl ¯ + 2H 2 O соль анилина азотистая диазосоединение кислота (соль диазония) Вторичные ароматические амины, подобно аминам жирного ряда, с азотистой кислотой образуют нитрозамины.

Третичные ароматические амины, в отличии от третичных аминов жирного ряда, взаимодействуют с азотистой кислотой. Третичная аминогруппа проявляет себя как заместитель I рода, поэтому остаток азотистой кислоты – нитрозогруппа – легко замещает водород в бензольном ядре в пара - положении к аминогруппе: (CH 3 ) 2 N H+HONO (CH 3 ) 2 N + NO+H 2 O

Реакции за счет ароматического ядра Аминогруппа как заместитель I рода облегчает реакции замещения в бензольном ядре; при этом замещающие группы ставятся в орто- и пара- положения к аминогруппе. Например, при действии бромной воды из анилина получается 2,4,6 – триброманилин: NH 2 NH 2 Br Br + 3 Br 2 + 3HBr Br анилин 2,4,6 – триброманилин

Действие окислителей. Под влиянием аминогруппы бензольное ядро теряет устойчивость к действию окислителей, и ароматические амины легко окисляются. Например, окисляя анилин (хромовой смесью K 2 Cr 2 O 7 + H 2 SO 4 ), получают хинон: NH 2 O + NH 3 O анилин хинон

Способы получения ароматических аминов Наибольший интерес представляет метод синтеза первичных ароматических аминов путем восстановления нитросоединений (реакция Зинина) NO 2 NH 2 + 2H 2 O нитробензол анилин

Ароматические диазосоединения и азосоединения (азокрасители) Среди производных первичных ароматических аминов одними из наиболее важных являются диазосоединения и азосоединения. И те и другие содержат двухвалентную группу из двух атомов азота N = N, называемую азогруппой.

В диазосоединениях азогруппа связана только с одним ароматическим углеводородным радикалом (Ar) и с какой- нибудь группой, присоединенной не через углеродный атом, например, с гидроксильной (OH). В азосоединениях азогруппа непосредственно связана с двумя ароматическими углеводородными радикалами: Ar N = N OH Ar N = N Ar диазосоединение азосоединение

Диазосоединения существуют в нескольких формах, легко превращающихся одна в другую. Вещества, отвечающие формуле Ar N = N OH, называются диазогидроксидами, они обладают амфотерными свойствами. При взаимодействии с кислотами диазогидроксиды ведут себя как основания и образуют соли диазония: + Ar N = N OH + HCl Ar N N Cl¯ + H 2 O диазогидроксид соль диазония

Под действием щелочей соли диазония вновь переходят в диазогидроксиды: + Ar N N Cl¯ + NaOH Ar N = N OH + HCl соль диазония диазогидроксид Простейшее ароматическое диазосоединение является производным бензола. Соответствующая соль диазония, существующая в солянокислой среде, называется хлоридом бензолдиазония (это соединение называют также хлоридом фенилдиазония).

Образование этой соли под действием соляной кислоты и обратный переход в диазогидроксид под влиянием щелочи можно представить схемой N = N OH N + N Cl¯ NaOH диазогидроксид хлорид бензолдиазония Соли диазония – наиболее важная форма диазосоединений.

Получение ароматических диазосоединений Диазосоединения получаются при диазотировании первичных ароматических аминов, т.е. при действии на них азотистой кислоты. Так как азотистая кислота в свободном виде неустойчива, то обычно к раствору амина в избытке соляной кислоты прибавляют раствор соли азотистой кислоты – нитрита натрия NaNO 2. Нитрит натрия разлагается соляной кислотой и выделяющаяся азотистая кислота HNO 2 сразу же взаимодействует с амином. В этих условиях диазосоединения образуются в виде солей диазония, с которыми обычно имеют дело при практическом использовании диазосоединений.

Например, при диазотировании простейшего первичного ароматического амина протекают следующие реакции: + NH 2 + HCl NH 3 Cl¯ анилин соль анилина NaNO 2 + HCl HNO 2 + NaCl нитрит натрия азотистая кислота

+ NH 3 Cl ¯ + HO N = O N N Cl¯+ +H 2 O соль анилина азотистая диазосоединение кислота (соль диазония) Диазотирование ведут при охлаждении, так как диазосоединения нестойки.

Химические свойства диазосоединений Соли диазония – весьма реакционноспособные вещества. Используя их как промежуточные продукты, из первичных аминов можно получать разнообразные органические соединения. Различают два типа превращений диазосоединений:

Реакции, протекающие с выделением азота. Диазосоединения неустойчивы; в кислом растворе уже при слабом нагревании или под действием света они гидролизуются, выделяя азот, и превращаются в фенолы: + N N Cl ¯ + HOH OH+ + N 2 +HCl диазосоединение фенол

Если соль диазония – хлорид, бромид или иодид – нагревать с соответствующей солью меди (CuCl, CuBr, CuJ), реакция протекает также с выделением азота. Вместо диазогруппы в бензольное ядро вводится галоген – образуются ароматические галогенпроизводные. Например: + N N Cl ¯ Cl + N 2 хлорид бензолдиазония хлорбензол

Реакции, протекающие без выделения азота. Среди реакций этого типа наиболее важны реакции взаимодействия солей диазония с фенолами и ароматическими аминами, приводящие к образованию азосоединений (азокрасителей). Простейшими азосоединениями является азобензол – вещество, в котором азогруппа ( N = N ) соединена с двумя остатками бензола: N = N Огромное значение имеют азосоединения, содержащие в ароматических ядрах гидроксильные группы или аминогруппы; они представляют собой большой класс красящих веществ, называемых азокрасителями.

Получение азосоединений Азосоединения получают при взаимодействии солей диазония с фенолами или ароматическимим аминами; эту реакцию называют реакцией азосочетания. Например, при сочетании диазосоединения из анилина с фенолом образуется азокраситель оранжевого цвета. + N N Cl¯ + H OH диазосоединение фенол из анилина N = N OH + HCl азокраситель (гидроксиазосоединение)

Если то же диазосоединение взаимодействует с диметиланилином (ароматическим амином), то получается азокраситель желтого цвета. С фенолами азосочетание ведут в щелочной среде, а с аминами в слабокислой или нейтральной. Исходный для получения азокрасителей первичный ароматический амин, который путем диазотирования превращают в диазосоединение, называется диазосоставляющей, а фенол или амин, вводимый в азосочетание, – азосоставляющей красителя.

Полная схема синтеза азокрасителя (азосоединения), известного под названием паракрасный. В качестве диазосостаавляющей берется n -нитроанилин, а в качестве азосоставляющей – β-нафтол. 1) диазотирование + O 2 N NH 2 O 2 N NH 3 Cl¯ n-нитроанилин соль нитроанилина + _ O 2 N N N Cl + 2H 2 O диазосоединение хлорид п-нитробензолдиазония

2) азосочетание OH + O 2 N N N Cl¯ + H β-нафтол (азосоставляющая) OH O 2 N N = N + HCl азокраситель (паракрасный) β-нафтол вступает в азосочетание за счет водорода в орто-положении к группе OH (заместителю I рода) (α-нафтол сочетается за счет водорода в пара положении к группе OH).

93 Рекомендуемая литература Пример списка литературы Коровин Николай Васильевич. Общая химия: Учебник. - 2-е изд., испр. и доп. - М.: Высш. шк., с.: ил. Павлов Н.Н. Общая и неорганическая химия: Учеб. для вузов. – 2-е изд., перераб. и доп. – М.: Дрофа, – 448 с.: ил. Ахметов Наиль Сибгатович. Общая и неорганическая химия: Учебник для студ. химико-технологических спец. вузов / Н.С.Ахметов. - 4-е изд., исп. - М.:Высш. шк.: Академия, с.: ил. Глинка Николай Леонидович. Общая химия: Учебное пособие для вузов / Н.Л.Глинка; Ермаков Л.И (ред.) – 29–е изд.; исп. – М.: Интеграл Пресс, 2002 – 727с.: ил. Писаренко А.П., Хавин З.Я. Курс органической химии – М.: Высшая школа,1975,1985. Альбицкая В.М., Серкова В.И. Задачи и упражнения по органической химии. – М.: Высш. шк., Грандберг И.И. Органическая химия – М.: Дрофа, Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия М.: Высш. Шк., 1981 Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии – М.: Академия., 2000.