24.11.2011А. Ходинов, МИФИ1 Газовые детекторы для модернизации эксперимента АТЛАС в ЦЕРН А.С. Романюк, А.И. Ходинов НИЯУ МИФИ ИТЭФ, 24 ноября 2011.

Презентация:



Advertisements
Похожие презентации
Monitoring system of the LHCb electromagnetic calorimeter NEC2007, Varna, Bulgaria Ivan Korolko (ITEP Moscow)
Advertisements

Tool: Pareto Charts. The Pareto Principle This is also known as the "80/20 Rule". The rule states that about 80% of the problems are created by 20% of.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Managing Your Network Environment Managing Cisco Devices.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v Optimizing BGP Scalability Implementing BGP Peer Groups.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Growing the Network Understanding the Challenges of Shared LANs.
Designing Network Management Services © 2004 Cisco Systems, Inc. All rights reserved. Designing the Network Management Architecture ARCH v
By Intersil Corporation. The ICL8038 waveform generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular,
© 2003, Cisco Systems, Inc. All rights reserved. CSPFA Chapter 3 Cisco PIX Firewall Technology and Features.
Loader Design Options Linkage Editors Dynamic Linking Bootstrap Loaders.
Effect of Structure Flexibility on Attitude Dynamics of Modernizated Microsatellite.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v Route Selection Using Policy Controls Applying Route-Maps as BGP Filters.
© 2006 Cisco Systems, Inc. All rights reserved. BSCI v Implementing IPv6 Defining IPv6 Addressing.
Unit-3 RECTIFIERS, FILTERS AND REGULATORS :Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit, Inductor.
ХИГГС-БОЗОН В ЭКСПЕРИМЕНТАХ ATLAS и CMS НА БАК В.А.Щегельский Семинар ОФВЭ и ОТФ 30 мая 2013.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v Customer-to-Provider Connectivity with BGP Connecting a Multihomed Customer to Multiple Service.
Dynamic Designer Is the easy way for you to cut as much as 80% from the time and cost of getting your new products to market, and improving the old ones.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v Route Selection Using Policy Controls Using Multihomed BGP Networks.
1 AIDA INRNE, Sofia, Bulgaria Radiation Sensors for GIF+ Assoc. prof. Plamen Iaydjiev – coordinator Group members: Prof. Ivan Vankov, assoc. prof. Liubomir.
M ICROWAVE FET Microwave FET : operates in the microwave frequencies unipolar transistors – current flow is carried out by majority carriers alone Its.
HPC Pipelining Parallelism is achieved by starting to execute one instruction before the previous one is finished. The simplest kind overlaps the execution.
Транксрипт:

А. Ходинов, МИФИ1 Газовые детекторы для модернизации эксперимента АТЛАС в ЦЕРН А.С. Романюк, А.И. Ходинов НИЯУ МИФИ ИТЭФ, 24 ноября 2011

А. Ходинов, МИФИ2 Muon Spectrometer and Inner Detector of ATLAS Технологии для высокоточной регистрации треков мюонов: CSC: разрешение 60 μm на 1 слой детектора MDT: разрешение 80 μm на 1 трубку/350 тыс трубок 5,500 м 2 Pixel (3 high res. 3D-space points): ~ 11 μm SCT (4 3D-space points): ~ 16 μm in rφ, 500 μm in r TRT (36 measurements): ~ 130 μm В эксперименте АТЛАС в области по псевдобыстротам | |>2.0 в условиях повышенной нагрузки более 200 Гц/см2 используются катодно-стриповые камеры CSC

А. Ходинов, МИФИ3 LHC upgrade to happen in two phases: L phase1 ~ 3 L LHC (~2018) L phase2 ~ 5-10 L LHC (sLHC ~2022) Bunch Crossing Phase2= 25 ns / 50 ns Muon Spectrometer affected regions : End-Cap Inner (CSC,MDT,TGC) End-Cap Middle |η |>2 (MDT,TGC) Total area ~400 m2 Goal: Replace the Small Wheels (CSC+MDT+TGC) Single counting rates in the Muon Chambers, Hz/cm 2 L LHC =10 34 cm -2 s -1

А. Ходинов, МИФИ4 Muon Atlas MicroMegas Activity (MAMMA) collaboration Arizona, Athens (NTU, U, Demokritos), Brandeis, Brookhaven, U Carlton, CERN, Istanbul (Bogaziçi, Doğuş), JINR Dubna, LMU Munich, MEPhI Moscow, Naples, CEA Saclay, USTC Hefei, South Carolina, Thessaloniki

А. Ходинов, МИФИ5 The Small Wheel of ATLAS MAMMA proposal for 2018 TGC 4 chambers based on the bulk-micromegas per sector 2 x 4 layers per chamber strips for precision (pitch 0.5–1 mm) strips for 2nd coordinate (pitch 1–2 mm) Precision measurement and 2nd coordinate in same layer Max strip length 1.2 m Total number of readout channels 2 M Total number of trigger channels 30k

А. Ходинов, МИФИ6 Chambers will be operated with an Ar:CO2 (93:7) gas mixture (safe and cheap gas, no flammable components) Why micromegas? Many good characteristics to fulfill ATLAS specs: Able to operate in high rate environment 10 kHz/sm2 Detector efficiency ~ 99% Spatial resolution m at angles up to 45 degree Time resolution 5 ns Level-1 trigger capability BCID (angle 1 mrad) 200 Hz/cm2 due to neutrons with E>100 keV Micro-TPC mode of operation to improve resolution of inclined tracks Technology challenges: Discharges due to heavily ionizing events Fabricate large size chambers (~ 1x2 m2) Frontend electronics 2M channels

А. Ходинов, МИФИ7 Bulk-micromegas structure Standard configuration Pillars every 5 (or 10) mm Pillar diameter 350 µm Dead area 1.5 (0.4)% Amplification gap 128 µm Mesh: 325 lines/inch Pillar distance on photo: 2.5 mm The bulk-micromegas technique uses PCB production tools and methods The mesh is placed at a well controlled distance on top of a PCB, what opens the door to industrial fabrication

А. Ходинов, МИФИ8 MM performance at H6 CERN Standard micromegas Safe operating point with excellent efficiency Gas gain: 3–5 x 10 3 Superb spatial resolution 500 µm strip pitch σMM = 36 ± 7 µm Ar:CF4:iC4H10 (88:10:2) (MM + Si telescope) X (mm) y (mm) Inefficient areas

А. Ходинов, МИФИ9 The resistive-strip protection concept Resistive strips connected to the ground Thin insulating layer in between the resistive and readout strips AC coupling of signals Sparks are neutralized through the resistive strips to the ground T. Alexopoulos et al., NIM A 640 (2011) 110– x100 mm 2 chamber with 100 mm long strips and 250 m pitch

А. Ходинов, МИФИ10 Sparks in 120 GeV pion & muon beams Pions, no beam, muons Chamber inefficient for O(100 ms) when sparks occur Stable, no HV drops, low currents for resistive MM Same behaviour up to gas gains of > 10 4 Gain 10 4 Gain pions muons beam off pions 15–20 kHz/cm23–5 kHz/cm2

А. Ходинов, МИФИ11 Prototype R16 with 2D readout x strips: 250µm r/o and resistive strips y: 250 µm only r/o strips PCB Mesh Resistivity values RG 55 MΩ Rstrip 35 MΩ/cm Resistive strips x strips y strips R16 x R16 y event display 55 Fe γ

А. Ходинов, МИФИ12 MM location on Small Wheel in cavern (side A) R11 R12 R13 R16xy Trigger (strips) DCS mmDAQ Laptop in USA mm R16 R 2.7±0.2 Hz/cm2 at L=10 34 cm-2s-1 Measured rate in close-by MDT 8 Hz/cm2

А. Ходинов, МИФИ13 The first CSC-sized chamber assembled and tested at CERN Assembly very simple, takes a few minutes Signals routed out without soldered connectors

А. Ходинов, МИФИ14 Разработка газовых пиксельных (GasPixel) детекторов для sLHC Комбинация пиксельной микросхемы и газовой пропорциональной камеры в одном приборе открывает новые возможности для детекторов ионизирущего излучения: Прецизионное измерение координаты (существенно лучшее, чем разрешение определяемое диффузией электронов) Восстановление треков частиц на основе векторной информации Отличное многотрековое разрешение Мощные возможности по распознаванию треков частиц при высоких загрузках Возможности организации трекового Level1-trigger во внутреннем детекторе АТЛАС Улучшение идентификации типов частиц с использованием переходного излучения за счет детальной информации на следе частицы.

А. Ходинов, МИФИ15 Принцип работы GasPixel детектора ~ -500 V Пиксельная микросхема Сетка которая обеспечивает газовое усиление в промежутке ~50 m Газовый дрейфовый объем (около 16 мм) 55 m ~50 m Детектор позволяет восстановить 3-х мерное изображение участка трека частицы Траектория частицы Первичные электроны

А. Ходинов, МИФИ16 Электрон с кластерами переходного излучения Газ с малой диффузией Возможности в сильной степени определяются свойствами газа Газовая смесь на основе ксенона (необходимая компонента для регистрации переходного излучения) DME/CO2 (50/50), DME/CO2 (50/50), Электрон без переходного излучения

А. Ходинов, МИФИ17 Результаты первых испытаний на тестовом пучке частиц в ЦЕРН Cluster counting 2-х слойный детектор обеспечивает фактор подавления пионов ~ 50 при 90% эффективности регистрации электронов Зависимость вероятности определения пиона как электрона от требований на эффективность регистрации электрона.

А. Ходинов, МИФИ18 Получена рекордная координатная точность для газовых камер Угловое расcечение соответствует точности определения импульса частицы 15% при p T = 40 GeV в одном слое детектора АТЛАС Получена рекордная координатная точность для газовых камер Угловое расcечение соответствует точности определения импульса частицы 15% при p T = 40 GeV в одном слое детектора АТЛАС = 11.5 m = 11.5 m = 0.6 o = 0.6 o Координатное и угловое разрешение с газом с низкой диффузией Результаты первых испытаний на тестовом пучке в ЦЕРН DME/CO2 (50/50)

А. Ходинов, МИФИ19 Summary Micromegas : Created and tested series of prototypes with bulk-micromegas detectors. The results of studies with beams allow us proposing to equip the ATLAS SW with resistive-strip bulk-micromegas detectors The detectors deliver at the same time a track angle-based Level-1 trigger signal and measure the trajectory with a precision far better than 100 µm Each layer delivers a track segment and the second coordinate making it a very powerful tool for pattern recognition and fake–track rejection The system comprises about 2M readout channels but only 30k trigger channels The active parts of the detectors will be produced in industry, assembly and testing in participating institutes GasPixel: GasPixel can be used as an Outer Tracker with L1 track trigger features to significantly improve ATLAS performance at high luminosity. A single layer GasPixel can provide a space point accuracy of about 11 mkm and momentum resolution of about 15% at Pt = 40 GeV. An application of this technique to the real detector requires a 3D Front-End electronics.

А. Ходинов, МИФИ20 Back up

А. Ходинов, МИФИ21 Small Wheels trigger and readout New BNL-designed chip: 64 channels On-chip zero suppression Amplitude and peak time finding Trigger out: address of first-in-time channel with signal above threshold within BX Data out: digital output of charge & time for channels above threshold + neighbor channels Trigger signals and data driven out through same GigaBitTranceiver (one board/layer) Trigger: track-finding algorithm in Content-Addressable Memory; latency estimated 25–32 BXs Small data volumes thanks to on-chip zero-suppression and digitization

А. Ходинов, МИФИ22 Micromegas and sparks Sparks are a well-known phenomenon in MMs In standard MMs sparks lead to short HV breakdowns and inefficiencies, but usually do not create any damage The spark problem was solved by adding a layer of resistive strips above the readout electrode, separated from it by an insulating layer The concept was thoroughly & successfully tested in the lab (55Fe source, Cu X-ray gun, cosmics), H6 hadron & muon beams, and with 5.5 MeV neutrons Sparks are no longer a problem: thanks to the resistive strips they are reduced to a local perturbation with voltage drops below 0.5 V

А. Ходинов, МИФИ23 Performance in neutron beam Standard MM could not be operated in neutron beam HV break-down and currents exceeding several µA already for gains of order 1000–2000 MM with resistive strips operated perfectly well, No HV drops, small spark currents up to gas gains of 2 x 10 4 Standard MMResistive MM

А. Ходинов, МИФИ24 MM setup in H6 test beam (July 2011) Large resistive MM R19 with 2D readout