Ура́н ( ура́ний) химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (лат. Uranium), относится.

Презентация:



Advertisements
Похожие презентации
«Уран» Работа Семенец Ивана 9 класс. Уран-(устаревший вариант ураний)- химический элемент с атомным номером 92 в периодической системе, атомная масса.
Advertisements

Добыча урановой руды, её переработка и использование. Выполнил : Артамонов Кирилл 10 « М » класс МОУ « СОШ 13 с УИОП »
Общие сведения Водород в природе Строение атома Физические свойства Получение Химические свойства Применение.
Титан Металл XXI века Металл XXI века. Положение титана в периодической системе химических элементов и строение атома. Титан элемент главной подгруппы.
Титан - Металл XXI века.
Муниципальное образовательное учреждение средняя общеобразовательная школа 37 с углубленным изучением английского языка г. Ярославль Железо Работу выполнила:
Натрий Металлы группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло - и электропроводность,
Химия 9 класс Леднева Дарья Николаевна Учитель химии МБОУ СОШ п. Дружба.
Водород - первый химический элемент периодической системы химических элементов Д. И. Менделеева. Атомный номер водорода 1, относительная атомная масса.
Азот. Азот в природе. АЗОТ В ПРИРОДЕ АТМОСФЕРНЫЙ N 2 ; NO 2 В СОСТАВЕ ЖИВЫХ БЕЛКОВ ОРГАНИЗМОВ, В МИНЕРАЛАХ И ПОЧВЕ ВАЖНЕЙШИЕ АЗОТНЫЕ УДОБРЕНИЯ АММОФОС.
I. ЖЕЛЕЗО КАК ХИМИЧЕСКИЙ ЭЛЕМЕНТ. II. НАХОЖДЕНИЕ В ПРИРОДЕ И ПРИМЕНЕНИЕ ЖЕЛЕЗА III. ФИЗИЧЕСКИЕ СВОЙСТВА. IV. ХИМИЧЕСКИЕ СВОЙСТВА.
Сера и ее свойства Химические свойства. Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень.
ФРАНЦИЙ Периодическая система химических элементов Д.И Менделеева.
Химический элемент с атомным номером 34 в периодической системе, обозначается символом Se.
Общая характеристика VI-а подгруппы Сера Сероводород и сульфиды Оксиды серы Оксид серы (IV) Оксид серы (VI) Сернистая кислота Серная кислота.
Алюминий Характеристика 1. Впервые получен в 1825 году Гансом Эрстедом. 2. В Периодической системе расположен в 3 периоде, III А - группе. 3. В природе.
Хром элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24.
Алюминий 13 Алюминий (лат. Aluminium) (лат. Aluminium) ,9815 3s 2 3p 1 Порядковый номер. Химический элемент III группы главной подгруппы 3-го.
GOLD Au 1. В переводе с прото - индо - европейских корней термин « золото » означал « желтый », « зеленый » или, возможно, « яркий ». 2. Золото – редкий.
Щелочные металлы. Число энергетических уровней Увеличивается Число электронов на внешнем уровне Не изменяется, равно номеру группы (1) Электроотрицательность.
Транксрипт:

Ура́н ( ура́ний) химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (лат. Uranium), относится к семейству актиноидов.

Общая характеристика элемента:

92 номер в таблице Менделеева Электронная формула основного состояния: 1s2 2s2p6 3s2p6d10 4s2p6d10f14 5s2p6d10f3 6s2p6d1 7s2 Электронная формула возбужденного состояния: 1s2 2s2p6 3s2p6d10 4s2p6d10f14 5s2p6d10f3 6s2p6d2 7s1 (или сокращенно:...5f3 6d2 7s1) Атом урана в возбужденном состоянии имеет 6 неспаренных электронов (3 - на 5-м уровне, 2 - на 6-м и 1 на внешнем) и может проявлять валентность 6 и степень окисления +6, например, в оксиде UO3

Валентных электронов в атоме урана 6 Характерные степени окисления: Уран может проявлять степени окисления от +3 до +6. Кроме того, существует оксид U 3 O 8. Степень окисления в нём формально дробная, а реально он представляет собой смешанный оксид урана (V) и (VI).

Распространение в природе

Содержание урана в земной коре составляет 0,0003 %, он встречается в поверхностном слое земли в виде четырёх разновидностей отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Демократической Республике Конго, Канаде (Большое Медвежье озеро), Чехии и Франции.

Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США.

Железоурановые сланцы и фосфатные руды составляют четвёртый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике ещё более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии. В слое литосферы толщиной 20 км содержится ~ 1014 т, в морской воде т.

Россия по запасам урана, с учетом резервных месторождений, занимает третье место в мире (после Австралии и Казахстана). В месторождениях России содержится почти 550 тыс.т запасов урана, или немногим менее 10 % его мировых запасов; около 63 % их сосредоточено в Республике Саха (Якутия). Основными месторождениями урана в России являются: Стрельцовское, Октябрьское, Антей, Мало- Тулукуевское, Аргунское молибден-урановые в вулканитах (Читинская область), Далматовское урановое в песчаниках (Курганская область), Хиагдинское урановое в песчаниках (Республика Бурятия), Южное золото-урановое в метасоматитах и Северное урановое в метасоматитах (Республика Якутия). Кроме того, выявлено и оценено множество более мелких урановых месторождений и рудопроявлений.

Основные физические свойства

Уран очень тяжёлый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: (призматическая, стабильна до 667,7 °C), (четырёхугольная, стабильна от 667,7 °C до 774,8 °C), (с объёмно центрированной кубической структурой, существующей от 774,8 °C до точки плавления).

Химические свойства

Свойства простого вещества

Химически уран весьма активен. Он быстро окисляется на воздухе и покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре °C, образуя U 3 O 8. Реакции металлического урана с другими неметаллами приведены в таблице. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана:

В кислотах-неокислителях уран растворяется, образуя UO 2 или соли U 4+ (при этом выделяется водород). С кислотами-окислителями (азотной, концентрированной серной) уран образует соответствующие соли уранила UO 2 2+ С растворами щелочей уран не взаимодействует. При сильном встряхивании металлические частицы урана начинают светиться.

В кислотах-неокислителях уран растворяется, образуя UO 2 или соли U 4+ (при этом выделяется водород). С кислотами-окислителями (азотной, концентрированной серной) уран образует соответствующие соли уранила UO 2 2+ С растворами щелочей уран не взаимодействует. При сильном встряхивании металлические частицы урана начинают светиться.

Соединения урана III

Соли урана(+3) (преимущественно, галогениды) восстановители. На воздухе при комнатной температуре они обычно устойчивы, однако при нагревании окисляются до смеси продуктов. Хлор окисляет их до UCl 4 Образуют неустойчивые растворы красного цвета, в которых проявляют сильные восстановительные свойства:

Галогениды урана III образуются при восстановлении галогенидов урана (IV) водородом: ( о C) или иодоводородом: (500 о C) а также при действии галогеноводорода на гидрид урана UH 3.

Кроме того, существует гидрид урана (III) UH 3. Его можно получить, нагревая порошок урана в водороде при температурах до 225 о С, а выше 350 о С он разлагается. Большую часть его реакций (например, реакцию с парами воды и кислотами) можно формально рассматривать как реакцию разложения с последующей реакцией металлического урана:

Соединения урана IV Уран (+4) образует легко растворимые в воде соли зеленого цвета. Они легко окисляются до урана (+6)

Соединения урана V

Соединения урана(+5) неустойчивы и легко диспропорционируют в водном растворе: Хлорид урана V при стоянии частично диспропорционирует: а частично отщепляет хлор:

Соединения урана VI

Степени окисления +6 соответствует оксид UO 3. В кислотах он растворяется с образованием соединений катиона уранила UO 2 2+ : C основаниями UO 3 (аналогично CrO 3, MoO 3 и WO 3 ) образует различные уранат-анионы (в первую очередь, диуранат U 2 O 7 2- ). Последние, однако, чаще получают действием оснований на соли уранила:

Из соединений урана (+6), не содержащих кислород, известны только гексахлорид UCl 6 и фторид UF 6. Последний играет важнейшую роль в разделении изотопов урана. Соединения урана (+6) наиболее устойчивы на воздухе и в водных растворах. Ураниловые соли, такие как уранилхлорид, распадаются на ярком свету или в присутствии органических соединений. Уран также образует ураноорганические соединения.

Биологическое значение элемента

В микроколичествах ( %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгки е и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 7 г.

Физиологическое действие

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Применение

Ядерное топливо

Наибольшее применение имеет изотоп урана 235 U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии. Выделение изотопа U 235 из природного урана сложная технологическая проблема. Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими ней тронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией). В результате захвата нейтрона с последующим β- распадом 238 U может превращаться в 239 Pu, который затем используется как ядерное топливо.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг). Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Тепловыделяющая способность урана 1 тонна обогащенного урана по тепловыделяющей способности равна 1 миллиону 350 тысячам тонн нефти или природного газа.

Геология

Основное применение урана в геологии определение возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов. Этим занимается геохронология. Существенное значение имеет также решение задачи о смешении и источниках вещества. В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при выделении горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин.

Стоимость

Несмотря на бытующие легенды о десятках тысяч долларов за килограммовые или даже грамовые количества урана, реальная его цена на рынке не столь высока стоимость килограмма необогащённой окиси урана U 3 O 8 росла от $21 в январе 2002, достигла пиковых $300 в середине 2007 г., в дальнейшем понижалась и колеблется между нынешними $ за кг с некоторой тенденцией к росту. При этом следует понимать, что открытого мирового рынка урана как такового не существует, в отличие, например от золота.

спасибо за внимание!