История микроскопа Клеточная теория Основы микроскопии Флуоресцентная микроскопия Конфокальная микроскопия Световая микроскопия высокого разрешения.

Презентация:



Advertisements
Похожие презентации
Гарифзянов А.Р.. План изучения темы 1.Методы цитологии. 2. Клеточная теория. 3. Особенности химического состава клетки: химические элементы клетки; химические.
Advertisements

Методы сканирующей зондовой микроскопии Мунавиров Б.В., Физический факультет, КГУ.
Дифракция света Характерным проявлением волновых свойств света является дифракция света отклонение от прямолинейного распространения на резких неоднородностях.
Муниципальное казённое образовательное учреждение вечерняя ( сменная ) общеобразовательная школа Болотнинского района Новосибирской области Тема урока.
Клетка – структурно- функциональная единица живого, способная к самовоспроизведению, для которой характерны все признаки живого.
Лекции по физике. Оптика Геометрическая оптика. 2 Основные законы оптики 1. Закон прямолинейного распространения света (в однородной среде) 2. Закон независимости.
Клеточная теория строения организмов. I.Этап Зарождение понятий о клетке.
Световые волны. Оглавление Принцип Гюйгенса Принцип Гюйгенса Закон отражения света Закон отражения света Закон преломления света Закон преломления света.
«История и методы изучения клетки. Клеточная теория» Учитель биологии школы 770 Жукова Любовь Анатольевна.
Интерференция. Дифракция. Мясникова Г. И. Учитель физики.
Волновая оптика Интерференция и дифракция. Иванова Светлана Николаевна Самара МБОУ СОШ 101.
ГРАНИЦЫ ДИФРАКЦИОННЫХ ПРИБЛИЖЕНИЙ. ДИСТАНЦИЯ РЭЛЕЯ Результат дифракции монохроматического излучения на каком-либо препятствии зависит не от абсолютных.
Клеточная теория Клеточная теория. Цитология – наука о клетке. наука о клетке. (от греч. «kytos» - клетка, «logos» - наука)
ГБПУЗ ЗДМ «МК 1» ФИЛИАЛ 3 Виды микроскопии Работу выполнила студентка группы ЛВ 13-3: Гирина Е.В.
Микроскопия Мир за гранью наших ощущений. Первые микроскописты Первый прибор типа микроскопа был построен около 1590 г. Нидерландскими мастерами братьями.
Дифракция света. дифракция света отклонение от прямолинейного распространения света на резких неоднородностях среды.
Микроскоп Автор: Аушева Бэла Ученица 8 "Б" класса. Учитель: Строкова Марина Александровна 31:03:2015.
ГЕОМЕТРИЧЕСКАЯ ОПТИКА , нм 0 Линии, вдоль которых распространяется световая энергия называются лучами. Совокупность лучей образует световой.
Волновая оптика Физика 11 класс. Эпиграф Геометрическая оптика – это всего лишь приближенный предельный случай волновой теории Геометрическая оптика –
Дифракция механических волн - нарушение закона прямолинейного распространения волн. Дифракция происходит всегда, когда волны распространяются в неоднородной.
Транксрипт:

История микроскопа Клеточная теория Основы микроскопии Флуоресцентная микроскопия Конфокальная микроскопия Световая микроскопия высокого разрешения

Основоположник биологической микроскопии Антон ван Лёвенгук ( ) и его микроскопиум История микроскопа

Клеточная теория Как растения, так и животные состоят из сходных элементов – клеток, что свидетельствует о единстве всей живой природы Сходство клеток растений и животных вытекает из общего для них способа образования (это - ключевая идея Шванна) Известное в ботанике представление о клетке как автономной элементарной единице растительного организма необходимо распространить и на животных Организм представляет собой сумму образующих его клеток и поэтому основа питания и роста лежит не в организме как целом, а в отдельных элементарных частях – клетках

Клеточная теория Теодор Шванн ( ) Эрнст Брюкке ( ) Рудольф Вирхов ( )

Развитие цитологии Развитие цитологии Эдуард Страсбургер Вальтер Флемминг Теодор Бовери ( ) ( ) ( )

Эрнст Аббе (Ernst Abbe, ) Разработал дифракционную теорию микроскопа Обосновал представления о дифракционном пределе разрешения микроскопа Стефан Хель (Stefan W. Hell, ) Разработал метод управления разрешением светового микроскопа, позволяющий преодолеть предел Аббе

Классификация методов микроскопии MicroscopyМикроскопияФизический принцип Far fieldдальнего поля используется дифракция световых волн, проходящих через щель, круглое отверстие или линзу Near fieldближнего поля используются оптические свойства слабых стоячих волн, возникающих на границе раздела двух сред (evanescent waves) Full fieldполного поля используются стоячие волны, формируемые светом лазера в объеме микрообъекта

Основы микроскопии Свет как электромагнитная волна Когерентная и монохроматическая световая волна описывается уравнением s = A*sin2pi/T * (t – x / v), где A амплитуда волны, T ее период, t время, x расстояние, v скорость света в среде. Если вместо периода T вести пространственную частоту u = 1/T и принять, что A = 1, t = 0, а скорость волны постоянна, мы получим уравнение: s = sin2pi*x*u

Основы микроскопии Дифракция световой волны на круглом отверстии Дифракция световой волны на круглом отверстии математически описывается преобразованием Фурье: Условиями формирования дифракционной картины являются когерентность волны и ее длина, которая должна быть в два раза меньше размеров микрообъекта. Для микроскопии наибольшее значение имеет закон масштаба преобразования Фурье, который гласит, что чем меньше размеры объекта, тем больше величина его дифракционной картины.

Основы микроскопии Разрешение и увеличение объек тива Оптическое разрешение есть минимальное расстояние между двумя точками изображения, пока они еще видны раздельно Условие слияния определяется формулой Рэлея-Аббе: где λ – длина волны света; n – показатель преломления среды ; α – угол раскрытия объектива

Основы микроскопии Номинальное разрешение объектива Знаменатель формулы Рэлея-Аббе назывется апертурой и обозначается NA: d = λ / 2*NA Значение апертуры гравируется на корпусе объектива как показатель его номинального разрешения. Если принять, что для дневного света λ = 550 нм, номинальное разрешение объектива будет равно 275 / NA.

Основы микроскопии

Специальные виды микроскопии Минимальная схема (светлое поле) Флуоресцентная микроскопия Дифференциально-интерференционный Фазовый контраст контраст (DIC)

Флуоресцентная микроскопия Эпифлуоресцентная схема Запирающий фильтр Возбуждающий фильтр Источник света Препарат с зеленой флуоресценцией, например, меченные ФИТЦ антитела Дихроическое зеркало Объектив

Флуоресцентная микроскопия Прижизненная микроскопия клеток Catharanthus roseus

Изучение окислительного стресса на клеточном уровне по активности митохондрий и состоянию мембран Окраска митохондрий родамином 123 и клеточных ядер бромидом этидия в культуре клеток HEK-293 (снимок студентки 4 курса Т.Никитиной)

Оценка цитотоксичности противоопухолевых препаратов Подсчет живых и погибших некрозом и апоптозом клеток. Окраска культуры клеток К562 акридиновым оранжевым и бромидом этидия

Конфокальная микроскопия Фильтры Точечная диафрагма Объектив Препарат Детектор Лазер Трехмерная реконструкция клеточного ядра, на которой видно, что каждая хромосома занимает свою территорию (G.Kreth et al., 2000)

Эрнст Аббе (Ernst Abbe, ) Разработал дифракционную теорию микроскопа Обосновал представления о дифракционном пределе разрешения микроскопа Стефан Хель (Stefan W. Hell, ) Разработал метод управления разрешением светового микроскопа, позволяющий преодолеть предел Аббе

Преобразование Фурье Функция рассеяния точки,или PSF, является мерой разрешения микроскопа Световая микроскопия высокого разрешения

Метод Stimulation Emission Depletion - STED Принцип метода основан на инициацииии преждевременной флуоресценции вторым лазером, луч которого имеет форму тора Изображения флуоресцирующих бус диамером 75 нм, полученные в конфокальном микроскопе (А) и методом STED (B) [S. W. Hell et al., 2005]

Световая микроскопия высокого разрешения АкронимПолное название Время разработки Достигнутое разрешение STEDStimulation Emission Depletion Microscopy нм GSDGround State Depletion нм SIMStructured Illumination Microscopy нм RESOLFTReversible Saturable Optically Linear Fluorescence Transitions нм PALMPhotoactivated Localization Microscopy нм STORMStochastic Optical Reconstruction Microscopy – 30 нм

С п а с и б о з а в н и м а н и е !