ЛАМПА НАКАЛИВАНИЯ * источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно W), накаливаемой электрическим током.

Презентация:



Advertisements
Похожие презентации
электрический источник света, в котором тело накала, помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой.
Advertisements

Строение лампы накаливания. Лампа накаливания Лампа накаливания электрический источник света, в котором так называемое тело накала нагревается до высокой.
ЛАМПА НАКАЛИВАНИЯ, источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно W), накаливаемой электрическим током.
Ла́мпа нака́ливания осветительный прибор, искусственный источник света. Свет испускается нагретой металлической спиралью при протекании через неё электрического.
Лампа накаливания электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный сосуд, нагревается.
Лампа накаливания Кузнецова Екатерина Материал для 9 класса.
Ла́мпа нака́ливания электрический источник света, в котором так называемое тело накала нагревается до высокой температуры за счёт протекания через него.
Лампа накаливания электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный.
От лампочки Эдисона до светодиодных ламп. Автор презентации учитель физики МКОУ «Захаровская СОШ» Бажина Н.В.
Агапов Егор. Преимущества: - высокий индекс цветопередачи, Ra налаженность в массовом производстве - низкая цена - небольшие размеры - отсутствие.
Презентацию подготовил ученик 8 « В » класса Куликов Илья.
Тема урока: Электрические источники света Источники света по способу преобразования электрической энергии в световое излучение разделяются на две основные.
Лампа накаливания Воронин Гриша 9В. конструкция Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной.
Невозможно представить современную квартиру без электричества. Экономное использование электроэнергии позволит сократить объемы использования природных.
Принцип действия. Конструкция. История создания. Преимущество. Недостатки. Интересные факты. Примечание.
Урок физики в 8 классе. повторить материал по теме «Работа и мощность тока», познакомиться с примерами практического применения теплового действия тока.
Презентацию подготовила ученица 8 класса «Б» Омельченко Марина.
Выполнил ученик 8б Васильев Никита. Общеобразовательное учереждение муниципальный центр образования г.Зея Амурская область.
Энергосберегающие люминесцентные лампы и их использование в быту. Проект учащихся 8 класса ГУО «Межисетская СОШ» Долбика Вячеслава и Юркевича Александра.
Презентация на тему: «Лампа накаливания» Подготовила ученица 8 класса МБОУ Коробовский лицей Жданова Елизавета.
Транксрипт:

ЛАМПА НАКАЛИВАНИЯ * источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно W), накаливаемой электрическим током до температуры К. Световая отдача лампы накаливания лм/Вт; срок службы от 5 до 103. ч. Изобретена в 1872 А. Н. Лодыгиным, усовершенствована Т. А. Эдисоном в 1879.

Конструкция современной лампы. На схеме: 1.колба; 2. буферный газ; 3. нить накала; 4 электрод (соединён с нижним контактом); 5. электрод (соединён с контактом на резьбе); 6. держатели нити; 7. стеклянный уступ держателей; 8. контактный проводник, 9. резьба; 10. изолятор; 11. нижний контакт

* Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

* Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной колбы, заполненной буферным газом и ограждающей нить накала от окружающей среды.

Перегорание лампы происходит во время её работы, то есть в то время, когда одновременно нить накала нагрета и через нить протекает электрический ток. Если в это время происходит разрыв нити, то между разведёнными концами нити обычно загорается электрическая дуга. В быту это можно заметить по яркой синевато-белой вспышке в момент перегорания лампы. Поскольку нить, как правило, представляет собой относительно тонкий провод, свёрнутый в спираль, то электрическое сопротивление нити может быть большим, нежели сопротивление ионизированного газа в дуге. Поэтому концы дуги начинают разбегаться от места разрыва нити, а сила тока в цепи возрастает. При дальнейшем развитии этого процесса дуга может загореться уже между держателями нити, сопротивление которых относительно мало, в результате сила тока в питающей цепи может намного превысить допустимые пределы, что приведёт либо к срабатыванию предохранителей в питающей цепи, либо к перегреву питающих проводов, что, возможно, спровоцирует пожар. Для того, чтобы разомкнуть цепь при возгорании дуги и не допустить перегрузки питающей цепи, в конструкции лампы предусмотрен плавкий предохранитель. Он представляет собой отрезок тонкой проволоки и расположен в цоколе лампы накаливания. Для бытовых ламп с номинальным напряжением 220 В такие предохранители обычно рассчитаны на ток 7 А. * Перегорание лампы происходит во время её работы, то есть в то время, когда одновременно нить накала нагрета и через нить протекает электрический ток. Если в это время происходит разрыв нити, то между разведёнными концами нити обычно загорается электрическая дуга. В быту это можно заметить по яркой синевато-белой вспышке в момент перегорания лампы. * Поскольку нить, как правило, представляет собой относительно тонкий провод, свёрнутый в спираль, то электрическое сопротивление нити может быть большим, нежели сопротивление ионизированного газа в дуге. Поэтому концы дуги начинают разбегаться от места разрыва нити, а сила тока в цепи возрастает. * При дальнейшем развитии этого процесса дуга может загореться уже между держателями нити, сопротивление которых относительно мало, в результате сила тока в питающей цепи может намного превысить допустимые пределы, что приведёт либо к срабатыванию предохранителей в питающей цепи, либо к перегреву питающих проводов, что, возможно, спровоцирует пожар. * Для того, чтобы разомкнуть цепь при возгорании дуги и не допустить перегрузки питающей цепи, в конструкции лампы предусмотрен плавкий предохранитель. Он представляет собой отрезок тонкой проволоки и расположен в цоколе лампы накаливания. Для бытовых ламп с номинальным напряжением 220 В такие предохранители обычно рассчитаны на ток 7 А.

Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность.

Колбы первых ламп были вакуумированны. Современные лампы заполняются буферным газом (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Это уменьшает скорость испарения материала нити. Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа, по возможности, с наиболее тяжёлыми молекулами. Смеси азота с аргоном являются принятым компромиссом в смысле уменьшения себестоимости. Более дорогие лампы содержат криптон или ксенон (молярные массы: азот: 28,0134 г/моль; аргон: 39,948 г/моль; криптон: 83,798 г/моль; ксенон: 131,293 г/моль)

Форма цоколя с резьбой обычной лампы накаливания была предложена Томасом Альвой Эдисоном. Размеры цоколей стандартизированы. У ламп бытового применения наиболее распространены цоколи Эдисона E14 (миньон), E27 и E40. Также встречаются цоколи без резьбы, а также бесцокольные лампы, часто применяемые в автомобилях.

Нить накала в первых лампах делалась из угля (точка сублимации 3559 °C). В современных лампах применяются почти исключительно спирали из осмиево- вольфрамового сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения ленгмюровского слоя. Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I=U/R) и мощность по формуле P=U·I, или P=U²/R. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет микрон. Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

ПРЕИМУЩЕСТВА: малая стоимость небольшие размеры ненужность пускорегулирующей аппаратуры при включении они зажигаются практически мгновенно отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации возможность работы как на постоянном токе (любой полярности), так и на переменном возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт) отсутствие мерцания и гудения при работе на переменном токе непрерывный спектр излучения устойчивость к электромагнитному импульсу возможность использования регуляторов яркости нормальная работа при низкой температуре окружающей среды НЕДОСТАТКИ: низкая световая отдача относительно малый срок службы резкая зависимость световой отдачи и срока службы от напряжения цветовая температура лежит только в пределах K, что придаёт свету желтоватый оттенок лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт 145°C, 75 Вт 250°C, 100 Вт 290°C, 200 Вт 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут. световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4% Преимущества и недостатки ламп накаливания