Введение в теорию множеств. Введение в теорию множеств 1. Основные определения, терминология Под множеством А мы понимаем совокупность объектов произвольной.

Презентация:



Advertisements
Похожие презентации
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 4. Тема: Множество. Операции над множествами.
Advertisements

Введение в теорию множеств 1. Основные определения, терминология Под множеством А мы понимаем совокупность объектов произвольной природы, объединенных.
Введение в теорию множеств 1. Основные определения, терминология Под множеством А мы понимаем совокупность объектов произвольной природы, объединенных.
Теория множеств. Определение Множество одно из ключевых понятий математики, в частности, теории множеств и логики. Понятие множества является одним из.
Лекция 1 Основные понятия ст.преп Касекеева А.Б..
ОТНОШЕНИЯ И ОПЕРАЦИИ НАД МНОЖЕСТВАМИ ДИАГРАММЫ ЭЙЛЕРА – ВЕННА МНОЖЕСТВА.
ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Составила: М.П. Филиппова доцент кафедры высшей математики ИМИ СВФУ.
Глава II. ТЕОРИЯ МНОЖЕСТВ 1. Основные понятия теории множеств Множество – некоторая совокупность объектов, называемых элементами этого множества. Понятие.
Лекция 1 Введение в дискретную математику. Элементы теории множеств. Дискретная математика Лектор : Данилова Соелма Доржигушаевна, доцент кафедры систем.
Свойства линейных операций над матрицами Свойства линейных операций над векторами.
Множество – это совокупность однотипных элементов или объектов, объединённых по некоторому признаку, интересному для данного рассмотрения или анализа.
Основные понятия теории множеств Самостоятельная работа Арифметические операции Основные термины Свойства арифметических операций.
Элементы теории множеств. Понятие множества Множество - это совокупность определенных различаемых объектов, причем таких, что для каждого можно установить,
Теория множеств Теоремы теории множеств. Задание Старейший математик среди шахматистов и старейший шахматист среди математиков – это один и тот же человек.
Группа предметов или некоторых объектов, объединённых общим свойством, образуют множества. Примеры: Учащиеся 9 «А» класса; Осенние месяцы; Чертёжные инструменты;
Математика Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной Множество. Операции.
1 1. Множества Понятие множества. Логические символы Под множеством понимают совокупность определенных и отличных друг от друга объектов, объединенных.
Урок 4 Множества. Множество есть многое, мыслимое нами как единое Георг Кантор.
Элементы теории множеств Лекция 3. Определение множества Величиной называется все что может быть измерено и выражено числом. Множеством называется совокупность.
Множества, операции над ними. «Множество есть многое, мыслимое нами как единое». Основоположник теории множеств немецкий математик Георг Кантор ( )
Транксрипт:

Введение в теорию множеств

Введение в теорию множеств 1. Основные определения, терминология Под множеством А мы понимаем совокупность объектов произвольной природы, объединенных общим свойством Р(х). Обозначение 1)Указанием определяющего свойства 2)Перечислением элементов Пример 1 Иногда второе обозначение распространяется и на некоторые бесконечные множества. Так, N={1,2,3,...,n,...} Z={...,-n,...,-2,-1,0,1,2,...,n,...}.

Определение 1 Множество А называется подмножеством В, если для любого х ( ) Обозначение: Другими словами, символ " " есть сокращение для высказывания Теорема 1 Для любых множеств А, В, С верно следующее: а) ; б) и.

Определение 2 Множества А и В называются равными, если они состоят из одних и тех же элементов (A=В). Другими словами, обозначение А=В служит сокращением для высказывания Пример Указать равные множества A={0;1;2}, B = {1;0;2}, C={0;1;2;0}, D={{1;2};0}, E={1;2}, F={x:x 3 -3x 2 +2x=0}.

Определение 3 Множество называется пустым, если оно не содержит ни одного элемента, то есть х не принадлежит этому множеству (для любого х). Обозначение:.

2. Операции над множествами Определение 1 Объединением двух множеств А и В называется множество Пример Пусть А={1,2,3,4}, B={2,4,6,8}, тогда = {1,2,3,4,6,8}. AB

Объединение множеств Теорема 1 Пусть А, В, С – произвольные множества. Тогда: а) – идемпотентность объединения; б) – коммутативность объединения; в) – ассоциативность объединения; г) ; д)

Пересечение множеств Определение 2 Пересечением множеств А и В называется множество Пример Пусть A={1,2,4,7,8,9}, B={1,3,5,7,8,10}, тогда A B

Теорема 2 Пусть А, В, С – произвольные множества, тогда: а) - идемпотентность пересечения; б) - коммутативность пересечения; в) - ассоциативность пересечения; г) Пересечение множеств

Объединение и пересечение множеств Теорема 3 1) 2) 3) 4)

Разность множеств, дополнение, симметрическая разность Определение 3 Разностью множеств A и B называется множество. Пример Пусть А={1,3,4,7,8,9,10}, B={2,3,4,5,6,7}, тогда A\B={1,8,9,10}, B\A={2,5,6}. A B

Разность множеств Теорема 4 Пусть А, В, С – произвольные множества, тогда: 1) 2) 3) 4) Теорема 5 (законы Моргана) а) б)

Множество U назовем "универсальным", если оно содержит все элементы и все множества являются его подмножествами. Понятие "универсального множества" у нас будет зависеть от круга задач, которые мы рассматриваем. Довольно часто под универсальным множеством понимают множество R –– множество вещественных чисел или множество С – комплексных чисел. Возможны и другие примеры. Всегда в контексте необходимо оговорить, что мы понимаем под универсальным множеством U.

Дополнение множеств Определение 4 Пусть U – универсальное множество. Дополнением А в U (или просто дополнением А) называется множество. Пример Если U – множество вещественных чисел и А – множество рациональных чисел, то – множество иррациональных чисел A

Дополнение множеств 1) 2) 3) Законы Моргана для дополнений а) ; б).

Симметрическая разность Определение 5 Симметрической разностью множеств A и B называют множество Задача (3 балла). Доказать, что A B