Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §52. Сочетания и размещения. Часть I Цыбикова Тамара Раднажаповна, учитель.

Презентация:



Advertisements
Похожие презентации
Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §52. Сочетания и размещения. Часть II Цыбикова Тамара Раднажаповна, учитель.
Advertisements

Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §54. Случайные события и их вероятности I. ИСПОЛЬЗОВАНИЕ КОМБИНАТОРИКИ.
Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §53. Формула бинома Ньютона.
Сочетания Открытый урок. План урока: 1. Рассмотрение случая выборок двух элементов. 2. Рассмотрение случая выборок трех элементов. 3. Рассмотрение случая.
Факториал 9 класс. В семье – шесть человек, а за столом в кухне – шесть стульев. В семье решили каждый вечер, ужиная, рассаживаться на эти шесть стульев.
Урок-обобщение (7 класс – алгебра) МОУ "СОШ 45 г. Чебоксары" Кабуркина М. Н.1.
Число всех выборов двух элементов из n данных с учетом их порядка обозначают А n и называют числом размещений из n элементов по 2. А n = n(n-1) Число.
Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Сочетания Перестановки Выбор нескольких элементов.
Элементы комбинаторики перестановки. От турбазы к горному озеру ведут 4 тропы. Сколькими способами туристы могут отправиться в поход к озеру, если они.
Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Элементы комбинаторики РАЗМЕЩЕНИЯ. Задача 1. Имеется 4 шара и 4 пустых ячейки в коробке. Сколько вариантов расположения шаров можно получить? Задача 2.
Г. ЕКАТЕРИНБУРГ МОУ-ГИМНАЗИЯ 13 УЧИТЕЛЬ АНКИНА Т.С. Комбинаторные задачи. Комбинаторика. выбор расположение перестановки n!
Объединение событий. Определение Пусть А и В – два события, относящиеся к одному случайному опыту. События, которые благоприятствуют событию А, и события,
«Элементы комбинаторики и теории вероятностей» МОУ « Сытьковская СОШ » Учителя математики: Селиверстова Л.Н., Аничкина В.В.
1 2. Матрицы. 2.1 Матрицы и их виды. Действия над матрицами. Джеймс Джозеф Сильвестр.
НЕЗАВИСИМЫЕ СОБЫТИЯ. УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. 8 класс.
ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды.
Таблица умножения на 8. Разработан: Бычкуновой О.В. г.Красноярск год.
1 Знаток математики Тренажер Таблица умножения 2 класс Школа 21 века ®м®м.
Транксрипт:

Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §52. Сочетания и размещения. Часть I Цыбикова Тамара Раднажаповна, учитель математики

Содержание Введение Пример 1. Учительница подготовила к контрольной работеПример 1. Учительница подготовила к контрольной работе… Решения: 1.а)1.б) 1.в) 1.г)1.а)1.б) 1.в) 1.г) Пример 2. Известно, что х = 2 а З b 5 с и а, Ь, с числа из множества {0,1,2, 3}. Решения: 2.а) 2.б) 2.в) 2.г)2.а) 2.б)2.в)2.г) Актуализация опорных знаний: Определение 1. n! Определение 1. n! Теорема 1 о числе перестановок P n =n! Теорема 1 о числе перестановок P n =n! Пример 3. К хозяину дома пришли гости А, Б, С, D. За круглым столом пять разных стульев. Решения: 3.а) 3.б) 3.в) 3. г)3.а)3.б)3.в)3. г) Пример 4. В чемпионате по футболу участвовало 7 команд. Решения: 1 способ; 2 способ; 3 способ1 способ2 способ3 способ Анализ примера 4 Определение 2Определение 2. Число сочетаний из n элементов по 2 Пример 5. Встретились 11 футболистов и 6 хоккеистов и каждый стал по одному разу играть с каждым в шашки Теорема 3 и определение 3Теорема 3 и определение 3. Число размещений из n элементов по 2 Пример 6. В классе 27 учеников. К доске нужно вызвать двоих. Итоги выборов двух элементов из n данных Источники Цыбикова Тамара Раднажаповна, учитель математики

Введение Правило умножения, которое мы использовали в предыдущем параграфе, применимо не только к двум, но и к трём, четырём и т.д. испытаниям. Цыбикова Тамара Раднажаповна, учитель математики

Пример 1 Учительница подготовила к контрольной работе 4 примера на решение линейных неравенств, 5 текстовых задач (две на движение и три на работу) и 6 примеров на решение квадратных уравнений (в двух из них D

Пример 1.а) Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.б) Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.в) Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.г) Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.г) Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 2 Известно, что х = 2 а З b 5 с и а, Ь, с числа из множества {0,1,2, 3}. а)Найти наименьшее и наибольшее значения числа х. б)Сколько всего таких чисел можно составить? в)Сколько среди них будет четных чисел? г)Сколько среди них будет чисел, оканчивающихся нулем? Цыбикова Тамара Раднажаповна, учитель математики

Пример 2.а) Известно, что х = 2 а З b 5 с и а, Ь, с числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : а) х наим = = 1, когда а=Ь=с=0. х наиб = =827125=27000, когда а=Ь=с=3. Ответ: а) 1 и Цыбикова Тамара Раднажаповна, учитель математики

Пример 2.б) Известно, что х = 2 а З b 5 с и а, Ь, с числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : б) Рассмотрим три испытания: выбор числа а, выбор числа Ь и выбор числа с. Они независимы друг от друга, и в каждом имеется по четыре исхода. По правилу умножения получаем, что всего возможны 444=64 варианта. Ответ: б) 64. Цыбикова Тамара Раднажаповна, учитель математики

Пример 2.в) Известно, что х = 2 а З b 5 с и а, Ь, с числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : в) Число х = 2 а З b 5 с будет четным только в тех случаях, когда а > 0, т. е. когда аЄ{1,2,3}. Значит, для выбора числа а есть три исхода. Снова применим правило умножения. Получим 434 = 48 вариантов. Ответ: в) 48 Цыбикова Тамара Раднажаповна, учитель математики

Пример 2.г) Известно, что х = 2 а З b 5 с и а, Ь, с числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся 0? РЕШЕНИЕ : г) Число х = 2 а З b 5 с будет оканчиваться нулем только в тех случаях, когда среди множителей есть хотя бы одна двойка и есть хотя бы одна пятерка, т. е. когда аЄ{1,2,3} и cЄ{1,2,3}. Значит, для выбора чисел а и с есть по три исхода. Снова применим правило умножения. Получим 343=36 вариантов. Ответ: а) 1 и ; б) 64; в) 48; г) 36. Цыбикова Тамара Раднажаповна, учитель математики

Актуализация опорных знаний В курсе алгебры 9 класса вы познакомились с понятием факториала и теоремой о перестановках. Напомним их. Определение 1. Произведение подряд идущих первых n натуральных чисел n! и называют «эн факториал»: n!=1 2 3 … (n-2) (n-1) n Цыбикова Тамара Раднажаповна, учитель математики 15 n n!1 1 2=22! 3=63! 4=244! 5=1205! 6=7206! 7=5040

Актуализация опорных знаний Теорема 1. n различных элементов можно расставить по одному на n различных место ровно n! способами. Как правило, эту теорему записывают в виде краткой формулы: P n =n! P n -это число перестановок из n различных из n различных элементов, оно равно n! Цыбикова Тамара Раднажаповна, учитель математики 16

Пример 3 К хозяину дома пришли гости А, Б, С, D. За круглым столом пять разных стульев. а) Сколькими способами можно рассадить гостей за столом? б) Сколькими способами можно рассадить гостей за столом, если место хозяина дома уже известно? в) Сколькими способами можно рассадить гостей за столом, если известно, что гостя С следует посадить рядом с гостем А? г) Сколькими способами можно рассадить гостей за столом, если известно, что гостя А не следует сажать рядом с гостем D? Цыбикова Тамара Раднажаповна, учитель математики

Пример 3.а) К хозяину дома пришли гости А, Б, С, D. За круглым столом пять разных стульев. а) Сколькими способами можно рассадить гостей за столом? РЕШЕНИЕ: а) На 5 стульев должны сесть 5 человек (включая хозяина дома). Значит, всего имеется Р5 способов их рассаживания: Р 5 = 5! = 120. Ответ: 120 Цыбикова Тамара Раднажаповна, учитель математики

Пример 3.б) К хозяину дома пришли гости А, Б, С, D. За круглым столом пять разных стульев. б) Сколькими способами можно рассадить гостей за столом, если место хозяина дома уже известно? РЕШЕНИЕ: б) Так как место хозяина фиксировано, то следует рассадить четырех гостей на четыре места. Это можно сделать Р 4 =4!=24 способами. Ответ: 24 Цыбикова Тамара Раднажаповна, учитель математики

Пример 3.в) К хозяину дома пришли гости А, Б, С, D. За круглым столом пять разных стульев. в) Сколькими способами можно рассадить гостей за столом, если известно, что гостя С следует посадить рядом с гостем А? РЕШЕНИЕ: в) Сначала выберем место для гостя А. Возможны 5 вариантов. Если место гостя А уже известно, то гостя С следует посадить или справа, или слева от А, всего 2 варианта. После того как места для А и С уже выбраны, нужно трех человек произвольно рассадить на 3 оставшихся места: Р 3 = 3! = 6 вариантов. Остается применить правило умножения: = 60. Ответ: 60 Цыбикова Тамара Раднажаповна, учитель математики

Пример 3.г) К хозяину дома пришли гости А, Б, С, D. За круглым столом пять разных стульев. г) Сколькими способами можно рассадить гостей за столом, если известно, что гостя А не следует сажать рядом с гостем D? РЕШЕНИЕ г) Решение такое же, как и в пункте в). Место для гостя D после выбора места для А можно также выбрать двумя способами: на два отдаленных от А стула. Ответ: а) 120; б) 24; в) 60; г) 60. Цыбикова Тамара Раднажаповна, учитель математики

Пример 4. В чемпионате по футболу участвовало 7 команд. Каждая команда сыграла по одной игре с каждой командой. Сколько всего было игр? Цыбикова Тамара Раднажаповна, учитель математики

РЕШЕНИЕ: I способ Рассмотрим таблицу 7 7, в которую вписаны результаты игр. В ней 49 клеток. По диагонали клетки закрашены, так как никакая команда не играет сама с собой. Если убрать диагональные клетки, то останется =42 клетки. В нижней части результатов нет, потому что все они получаются отражением уже имеющихся результатов из верхней части таблицы. Поэтому количество всех проведенных игр равно половине от 42, т.е Цыбикова Тамара Раднажаповна, учитель математики :10:52:20:01:01:3 24:31:0 0:01:1 31:31:01:20:0 41:1 1:4 51:00:0 62:2 7

РЕШЕНИЕ: II способ Произвольно пронумеруем команды 1, 2, …, 7 и посчитаем число игр поочередно. Команда 1 встречается с командами 2-7 – это 6 игр, 2 – с 3-7 – это 5 игр и т.д. Всего =21 игр Цыбикова Тамара Раднажаповна, учитель математики 24 команды командкол-во игр ВСЕГО ИГР21

РЕШЕНИЕ: III способ Используем геометрическую модель: 7 команд – это вершины выпуклого 7-угольника, а отрезок между двумя вершинами – это встреча двух соответствующих команд: сколько отрезков – столько игр. Из каждой вершины выходит 6 отрезков – столько игр. Получается 7 6=42 отрезков, каждый из которых посчитан дважды: и как АВ, и как ВА. Значит, 42/2=21 отрезок. ОТВЕТ: Цыбикова Тамара Раднажаповна, учитель математики 25

Анализ примера 4 Состав игры определен, как только мы выбираем две команды. Значит, количество всех игр в турнире для n команд – это в точности количество всех выборов двух элементов из n данных элементов. Важно при этом то, что порядок выбора не имеет значения, т.е. если выбрано две команды, то какая из них первая, а какая вторая – не существенно. Первую команду можно выбрать n способами, а вторую – (n-1) способами. По правилу умножения получаем n(n-1). Но при этом состав каждой игры посчитан дважды. Значит, число игр равно n(n-1)/2. Тем самым фактически доказана следующая теорема. Теорема 2 (о выборе двух элементов). Если множество состоит из n элементов и требуется выбрать два элемента без учета их порядка, то такой выбор можно произвести n(n-1)/2 способами Цыбикова Тамара Раднажаповна, учитель математики 26

Определение 2 Достаточно длинный словесный оборот «число всех выборов двух элементов без учета их порядка из n данных» неудобен при постоянном использовании в решении задач. Математики поступили просто: ввели новый термин и специальное обозначение. Определение 2. число всех выборов двух элементов без учета их порядка из n данных элементов называют числом сочетаний из n элементов по 2 и обозначают (цэ из эн по два) Цыбикова Тамара Раднажаповна, учитель математики 27

Пример 5. Встретились 11 футболистов и 6 хоккеистов и каждый стал по одному разу играть с каждым в шашки, которые они «давненько не брали в руки». Сколько встреч было: а)между футболистами; б)между хоккеистами; в)между футболистами и хоккеистами; г)всего? Цыбикова Тамара Раднажаповна, учитель математики

РЕШЕНИЕ: а) б) в) Будем действовать по правилу умножения. Одно испытание – выбор футболиста, а другое испытание – выбор хоккеиста. Испытания предполагаются независимыми, и у них соответственно 11 и 6 исходов. Значит получится 11 6=66 игр. г) Можно сложить все предыдущие ответы: =136; но можно использовать и формулу для числа сочетаний: Цыбикова Тамара Раднажаповна, учитель математики 29

Теорема 3 и определение 3 А что получится, если мы будем учитывать порядок двух выбираемых элементов? По правилу умножения получаем следующую теорему. Теорема 3. Если множество состоит из n элементов и требуется выбрать из них два элемента, учитывая их порядок, то такой выбор можно произвести n(n-1) способами. Доказательство: Первый по порядку элемент можно выбрать n способами. Из оставшихся (n-1) элементов второй по порядку элемент можно выбрать (n-1) способом. Так как два этих испытания (выбора) независимы друг от друга, то по правилу умножения получаем n(n-1). Определение 3. Число всех выборов двух элементов с учетом их порядка из n данных называют числом размещений из n элементов по 2 и обозначают Цыбикова Тамара Раднажаповна, учитель математики 30

Пример 6 В классе 27 учеников. К доске нужно вызвать двоих. Сколькими способами это можно сделать, если: а) первый ученик должен решить задачу по алгебре, а второй по геометрии; б) они должны быстро стереть с доски? Цыбикова Тамара Раднажаповна, учитель математики

Цыбикова Тамара Раднажаповна, учитель математики

Итоги выборов двух элементов А как будут выглядеть формулы, если в них верхний индекс 2 заменить на 3, 4, … и вообще на произвольное число k, 1k n? Здесь мы переходим к основному вопросу параграфа – к выборам, состоящим из произвольного числа элементов Цыбикова Тамара Раднажаповна, учитель математики 33

Источники Алгебра и начала анализа, классы, Часть 1. Учебник, 10-е изд. (Базовый уровень), А.Г.Мордкович, М., 2009 Алгебра и начала анализа, классы. (Базовый уровень) Методическое пособие для учителя, А.Г.Мордкович, П.В.Семенов, М., 2010 Таблицы составлены в MS Word и MS Excel. Интернет-ресурсы Цыбикова Тамара Раднажаповна, учитель математики