Задачи, приводящие к понятию производной. Цели урока рассмотреть задачи, приводящие к понятию производной; ввести понятие производной.

Презентация:



Advertisements
Похожие презентации
Задачи, приводящие к понятию производной. X Y
Advertisements

1 ЗАДАЧА О МГНОВЕННОЙ ВЕЛИЧИНЕ ТОКА Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть.
ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ 1. Задачи, приводящие к понятию производной Составила учитель математики МОУ «Гимназия им. Горького А.М.»: Фабер Г.Н.
Интересная производная Цели данной работы: Рассмотреть применение производной в различных науках Познакомиться с учёными изучавших производную функции.
Физический смысл производной «… нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира …» Н.И. Лобачевский.
Производная и дифференциал.. Геометрический смысл производной секущая Будем М М 0. Тогда секущая М 0 М занимает соответственно положения М 0 М 1, М 0.
Работа Сизовой Натальи Владимировны МОУ «Лицей 3» г. Сарова Персональный идентификатор:
ПРОИЗВОДНАЯ ФУНКЦИИ В ТОЧКЕ Лекция 1 Дифференциальное исчисление Автор: И. В. Дайняк, к.т.н., доцент кафедры высшей математики БГУИР.
Применение производной в науке и технике Выполнил студент группы И 3-14 Андреев Роман.
1 2 Определение производной функции в точке Непрерывность дифференцируемой функции Дифференциал функции Геометрический смысл производной и дифференциала.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Дифференциальное исчисление Тема: Производная функции.
ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ. В моей презентации речь пойдёт о понятии производной, правилах её применения в науке и технике и о решении задач в этой области.
Задача 1 (о скорости движения). По прямой, на которой заданы начало отсчета, единица измерения (метр) и направление, движется некоторое тело (материальная.
Проблемы и суждения Подготовила: учитель математики МОУ СОШ 3 г.Аркадака ЗЕНОВА ОЛЬГА АНАТОЛЬЕВНА МАТЕМАТИКА В СИСТЕМЕ МЕТАПРЕДМЕТНЫХ ЗНАНИЙ УЧАЩИХСЯ.
Чиркова Наталья Викторовна1 Алгебра и начала анализа. 11 класс.
1. Производная 2. Общие правила составления производных 3. Производная сложной функции 4. Механическая интерпретация производной 5. Геометрическая интерпретация.
Применение производных к решению задач 10 класс Р.О. Калошина, ГБОУ лицей 533.
Применение производной в физике Алгебра и начала анализа 10 класс.
Производная и ее применение в науке и технике Выполнил: Егоров Даниил, студент 1-ого курса ЧЭМК.
Выполнено ученицей 10 класса «А» ГБОУ СОШ 323 Викторией Петровой.
Транксрипт:

Задачи, приводящие к понятию производной

Цели урока рассмотреть задачи, приводящие к понятию производной; ввести понятие производной.

К понятию производной можно прийти, рассматривая, например, такое широко используемое в физике понятие, как мгновенная скорость неравномерно движущегося тела.

Мгновенная скорость тела Мгновенной скоростью тела называют скорость, которую оно имеет в данный момент времени (в данной точке траектории)

Как вы представляете себе мгновенную скорость? Если тело движется равномерно, то в разные моменты времени его скорость одинакова. Если тело движется неравномерно (ускоряясь или замедляясь), то в разные моменты времени его скорость будет различной

Фраза «скорость в данный момент времени» не более как синоним фразы «мгновенная скорость». Как говорится, «что в лоб, что по лбу». Термин «скорость в данный момент времени» нуждается в разъяснении в той же мере, в какой нуждается в нём термин «мгновенная скорость».

Физик эту проблему решает просто. У него есть приборы, например, спидометр. А математик создаст математическую модель процесса.

«Территория» исследований Связь между количественными характеристиками самых различных процессов, исследуемых физикой, химией, биологией, экономикой, техническими науками, аналогична связи между путём и скоростью. Основным математическим понятием, выражающим эту связь является производная.

Задачи, приводящие к понятию производной Центральные понятия дифференциального исчисления – производная и дифференциал возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них – физическая задача определения скорости неравномерного движения и геометрическая задача построения касательной к кривой.

Свободное падение тела Будем вслед за итальянским учёным Г. Галилеем изучать закон свободного падения тел. Поднимем камешек и затем из состояния покоя отпустим его. Движение свободно падающего тела явно неравномерное. Скорость v постепенно возрастает. Но как именно выглядит зависимость v(t)?

Скорость свободного падения тела Фиксируем момент t, в который мы хотим знать значение скорости v(t). Пусть h – небольшой промежуток времени, прошедший от момента t. За это время падающее тело пройдёт путь, равный s(t+h)-s(t).

Скорость свободного падения тела Если промежуток времени h очень мал, то приближённо s(t+h)-s(t)v(t)h, или причём последнее приближённое равенство тем точнее, чем меньше h.

Скорость свободного падения тела Значит величину v(t) скорости в момент t можно рассматривать как предел, к которому стремится отношение, выражающее среднюю скорость на интервале времени от момента t до момента t+h.

Скорость свободного падения тела

Задача о мгновенной скорости Предел средней скорости за промежуток времени от t 0 до t при t t 0, называется мгновенной скоростью v(t 0 ) в момент времени t 0

Алгоритм На языке предмета t = t – t 0 v = v(t+t 0 ) - v(t 0 ) 4. На математическом языке 1. x = x – x 0 2. f = f(x+x 0 ) – f(x 0 ) 3. 4.

Задача о касательной к графику функции Рассмотрим теперь другой классический пример, который решается в терминах производной, - построение касательной к кривой. Требуется построить прямую Т, касательную в т. А к кривой – графику функции y = f(x).

Задача о касательной к графику функции y = f(x) x y x0x0 М 0 (х 0,у 0 ) β А В x М(х,у) С х=х-х 0 f(x) = f(x) - f(x 0 ) tgβ = При х 0

А л г о р и т м 1) x = x – x 0 2) f = f(x+x 0 ) – f(x 0 ) 3) 4)

y=f(x) M 0 M T x 0 x 0 +x x y y x 0 Угловой коэффициент касательной к графику функции y = f(x) можно определить по формуле

Задача о скорости химической реакции Средняя скорость растворения соли в воде за промежуток времени [t0;t1] (масса соли, растворившейся в воде) изменяется по закону х = f(t) определяется по формуле

Задача о теплоёмкости тела Если температура тела с массой в 1 кг повышается от t 1 = 0 до t 2 = τ, то это происходит за счёт того, что телу сообщается определённое количество тепла Q; значит Q есть функция температуры τ, до которой тело нагревается: Q=Q(τ).

Задача о теплоёмкости тела Пусть температура повысилась с τ до τ +Δτ. Количество тепла ΔQ, затраченное для этого нагревания равно: ΔQ=Q(τ+Δτ)-Q(τ). Отношение есть количество тепла, которое необходимо «в среднем» для нагревания тела на 1. Это отношение называется средней теплоёмкостью, которая не даёт представления о теплоёмкости для любого значения температуры τ. Теплоёмкостью при температуре τ называется предел отношения приращения количества тепла ΔQ к приращению температуры Δτ.( при Δτ 0)

1)τ = τ – τ 0 x = x – x 0 2) Q = Q(τ 1 ) - Q(τ 0 ) f = f(x) – f(x 0 ) 3) 4) А л г о р и т м На языке предмета На математическом языке

Задача о мгновенной величине тока Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть Δt – некоторый промежуток времени, Δq = q(t+Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока.

Задача о мгновенной величине тока Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt0.

1)t = t – t 0 x = x – x 0 2) q = q(t 1 ) - q(t 0 ) f = f(x) – f(x 0 ) 3) 4) А л г о р и т м На языке предмета На математическом языке

Экономическая задача Пусть функция u(t) выражает количество произведенной продукции за время t. Найдем производительность труда в момент t 0. За период от t 0 до t 0 + t количество продукции изменится от u(t 0 ) до u 0 + u = u(t 0 + t). Тогда средняя производительность труда за этот период поэтому производительность труда в момент t 0

Рост численности населения Выведем формулу для вычисления численности населения на ограниченной территории в момент времени t. Пусть у=у(t)- численность населения. Рассмотрим прирост населения за t = t - t 0 y=k y t, где к = к р – к с –коэффициент прироста (к р – коэффициент рождаемости, к с – коэффициент смертности) получим

Выводы Различные задачи привели в процессе решения к одной и той же математической модели – пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Значит, эту математическую модель надо специально изучить, т.е.: 1) Присвоить ей новый термин. 2) Ввести для неё обозначение. 3) Исследовать свойства новой модели. 4) Определить возможности применения нового понятия - производная

Определение производной Производной функции f(x) в точке х называется предел отношения приращения функции в точке х к приращению аргумента, когда приращение аргумента стремится к нулю, если этот предел существует

а) мгновенная скорость неравномерного движения есть производная от пути по времени; б) угловой коэффициент касательной к графику функции в точке (x 0 ; f(x)) есть производная функции f(x) в точке х =х 0 ; в) мгновенная сила тока I(t) в момент t есть производная от количества электричества q(t) по времени; г) теплоёмкость С(τ) при температуре τ есть производная от количества тепла Q(τ), получаемого телом; д) скорость химической реакции в данный момент времени t есть производная от количества вещества у(t), участвующего в реакции, по времени t. Возвращаясь к рассмотренным задачам, важно подчеркнуть следующее:

А это значит: «…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…» Н.И. Лобачевский

Аппарат производной можно использовать при решении геометрических задач, задач из естественных и гуманитарных наук, экономических задач оптимизационного характера. И, конечно, не обойтись без производной при исследовании функции и построении графиков, решении уравнений и неравенств

Авторы: Учащиеся 10 класса Амбарцумян Ануш, Дешевых Андрей, Рындин Вячеслав, Макаровская Ирина Леликова Евгения, Морохов Александр.