Задача 1. Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при одном из бросков выпало 2 очка.

Презентация:



Advertisements
Похожие презентации
Еще больше презентаций на. Основы теории вероятности Основные понятия и определения.
Advertisements

Основы теории вероятности Основные понятия и определения.
Классическое определение вероятности Решение задач.
Классическое определение вероятности Решение задач.
Презентация на тему: Презентация на тему: «Основы теории вероятностей» Презентацию подготовила: Струсевич Анастасия. Презентацию подготовила: Струсевич.
Теория вероятностей и комбинаторные правила для решение задачи ЕГЭ В 10.
Цель урока : Выработать умение решать задачи на определение классической вероятности с использованием основных формул комбинаторики. Оборудование: карточки,
В10 ЕГЭ-2013 Простейшие вероятностные задачи. Решение заданий по материалам ЕГЭ Александрова О.С., учитель математики и информатики МОУ «СОШ 76» г.Саратова.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ в заданиях ЕГЭ. Задачи из Открытого банка заданий ЕГЭ.
Арсентьевой Анастасии 11 А класс.. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ В ЗАДАЧАХ ЕГЭ И ГИА ГБОУ СОШ 762 г. Москва 2012.
Работа учителя математики МОУ Кубянская сош Атнинского муниципального района РТ Хакимзяновой Н.И. Урок математики в 9 классе.
РЕШЕНИЕ ЗАДАЧ Орлова Л.В., Малышкина С.Ю. вероятность.
Теория вероятности Основные понятия, определения, задачи.
Блок 2.Простейшие правила и формулы вычисления вероятностей Выполнила: учитель МОУ Вохомская СОШ Адеева Г.В.
Определение вероятности Классическое и статистическое определение вероятности.
Задача 1 Задача 1 Какова вероятность того, что при бросании игральной кости выпадает число очков, больше 4?Какова вероятность того, что при бросании игральной.
Рыжова Светлана Александровна ГОУ СОШ 703 г. Москвы 1 Теория вероятностей Школа ЕГЭ.
«Элементы комбинаторики и теории вероятностей» МОУ « Сытьковская СОШ » Учителя математики: Селиверстова Л.Н., Аничкина В.В.
Решение заданий В10 по материалам открытого банка задач ЕГЭ по математике 2013 года.
Транксрипт:

Задача 1. Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при одном из бросков выпало 2 очка.

Решение: Чтобы выпало 8 очков за 2 броска, нужно чтобы при каждом бросании кубика было больше 1. Получается, что 8 очков может выпасть только так: 2 и 6, 3 и 5, 4 и 4, 5 и 3, 6 и 2. Т.е. m=5 (все исходы), а n=2. Получается, что вероятность того, что при одном из бросков выпало 2 очка, равна 2/5=0,4. Ответ: 0,4.

Задача 2 Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.

Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи: 1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра). 2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр). 3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2). Всего получаем P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места. Ответ: 0,3

Задача 3 Цифры 1, 2, 3, …, 9, выписанные на отдельные карточки складывают в ящик и тщательно перемешивают. Наугад вынимают одну карточку. Найти вероятность того, что число, написанное на этой карточке: а) четное; б) двузначное.

Решение: а) n = 9, так как всего 9 различных карточек. m = 4, так как всего на 4 карточках написаны четные числа (2, 4, 6, 8). Тогда P=4/9. б) n = 9, так как всего 9 различных карточек. m = 0, так как на всех карточках написаны однозначные числа. Тогда P=0/9=0. Ответ: 4/9, 0.

Задача 4 Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение: Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 7 элементов. Их число равно

Задача 5 Из цифр 1, 2, 3, 4, 5 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди этих чисел таких, которые начинаются цифрой 3?

Решение: Поставим цифру 3 на первое место и зафиксируем ее. А остальные четыре цифры будем переставлять для получения различных чисел. Таким образом, количество чисел будет определяться количеством перестановок среди чисел 1, 2, 4, 5. N = 4! = 24. Ответ: 24