Прямая в пространстве Каноническое уравнение прямой Параметрическое уравнение прямой Уравнение прямой, как линии пересечения двух плоскостей Угол между.

Презентация:



Advertisements
Похожие презентации
§ 13. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Advertisements

§ 4. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Прямая в пространстве. Общее уравнение прямой Прямая линия в пространстве определяется как линия пересечения двух плоскостей.
Плоскость и прямая в пространстве Лекции 10, 11. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
Плоскость и прямая в пространстве Лекция 10. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
ГЛАВА 3 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. §1. Прямая на плоскости. Различные виды уравнений прямой на плоскости. Пусть имеется прямоугольная система координат.
3. Взаимное расположение прямых в пространстве В пространстве две прямые могут: а) быть параллельны, б) пересекаться, в) скрещиваться. Пусть прямые 1 и.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Прямая в пространстве.
3. Взаимное расположение плоскостей В пространстве две плоскости могут: а) быть параллельны, б) пересекаться. Пусть уравнения плоскостей λ 1 и λ 2 имеют.
Пусть прямая задана уравнением: И пусть задана плоскость Рассмотрим возможные случаи ориентации прямой и плоскости:
{ общее уравнение прямой на плоскости – уравнение прямой с угловым коэффициентом – векторная и параметрическая формы уравнения прямой – совместное исследование.
Аналитическая геометрия Часть 2 Геометрия в пространстве.
Тема 10 «Прямая в пространстве» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Переход от общих уравнений.
Урок 2 Прямая на плоскости.. Взаимное расположение прямых на плоскости Прямые на плоскости могут совпадать, пересекаться или быть параллельными. 1. Пусть.
Аналитическая геометрия Лекции 8,9. Прямая на плоскости.
Общее уравнение прямой В декартовых координатах каждая прямая определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет.
Прямая на плоскости Общее уравнение прямой Уравнение прямой в отрезках Каноническое уравнение прямой Уравнение прямой с угловым коэффициентом Угол между.
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
Через любые две точки пространства проходит единственная прямая.
Урок1 Прямая на плоскости.. Виды уравнений прямой на плоскости. Прямая на плоскости может быть задана одним из следующих ниже уравнений. 1. Прямая на.
Транксрипт:

Прямая в пространстве Каноническое уравнение прямой Параметрическое уравнение прямой Уравнение прямой, как линии пересечения двух плоскостей Угол между двумя прямыми Угол между прямой и плоскостью Условие принадлежности двух прямых одной плоскости Точка пересечения прямой и плоскости

Каноническое уравнение прямой Пусть прямая L проходит через данную точку М 0 (x 0 ; y 0 ; z 0 ) параллельно вектору: Каноническое уравнение прямой М0М0 L М Тогда точка М (x; y; z) лежит на прямой только в том случае, если векторы и коллинеарны По условию коллинеарности двух векторов: - направляющий вектор прямой

Каноническое уравнение прямой Пусть прямая проходит через две заданные и отличные друг от друга точки: М 1 (х 1 ; у 1 ; z 1 ) и М 2 (х 2 ; у 2 ; z 2 ). М1М1 М2М2 Тогда в качестве направляющего вектора в каноническом уравнении можно взять вектор: Уравнение прямой, проходящей через две заданные точки L

Параметрическое уравнение прямой При решении многих практических задач используют параметрическое уравнение прямой, которое получается из канонического уравнения: Параметрическое уравнение прямой

Уравнение прямой, как линии пересечения двух плоскостей Пусть две непараллельные плоскости заданы общими уравнениями: Эти плоскости определяют единственную прямую в пространстве: L Уравнение прямой, как линии пересечения двух плоскостей

Пример Написать каноническое уравнение прямой: Найдем точку, принадлежащую прямой, то есть удовлетворяющую системе уравнений. Пологая z равному любому числу, например, z = 0, получим: Точка M 0 (11; -8; 0) – принадлежит прямой Найдем координаты направляющего вектора прямой:

Угол между прямыми Пусть две прямые заданы каноническими уравнениями: Углом между этими прямыми называется угол между направляющими векторами к этим прямым. L1L1 L2L2

Угол между прямой и плоскостью Пусть прямая L задана каноническим уравнением: Плоскость p задана общим уравнением: Углом между прямой и плоскостью называется угол между прямой и проекцией этой прямой на плоскость. L р

Условие принадлежности двух прямых одной плоскости Две прямые в пространстве могут пересекаться, быть параллельными, и скрещиваться. совпадать, В первых трех случаях прямые лежат в одной плоскости.

Условие принадлежности двух прямых одной плоскости Пусть две прямые заданы каноническими уравнениями: Для принадлежности двух прямых одной плоскости необходимо и достаточно, чтобы три вектора: М1М1 М2М2 L1L1 L2L2 были компланарны. Условие принадлежности двух прямых одной плоскости

Точка пересечения прямой и плоскости При вычислении координат точки пересечения прямой и плоскости следует совместно решить систему уравнений: К При этом необходимо: Записать уравнение прямой в параметрическом виде:

Точка пересечения прямой и плоскости Подставить t 0 в параметрическое уравнение прямой: Подставить в уравнение плоскости вместо x; y; z: Решить полученное уравнение относительно t:

Пример Найти точку пересечения прямой и плоскости. Напишем параметрическое уравнение прямой: Подставим в уравнение плоскости: Подставим в уравнение прямой: