ОБЪЕМ ПИРАМИДЫ Теорема. Объем пирамиды равен одной третьей произведения площади ее основания на высоту. Доказательство. Рассмотрим случай треугольной пирамиды.

Презентация:



Advertisements
Похожие презентации
Обобщенный конус Пусть F - фигура на плоскости π, и S - точка вне этой плоскости. Отрезки, соединяющие точки фигуры F с точкой S, образуют фигуру в пространстве,
Advertisements

1 Задания В 9 ЕГЭ Диагональ куба равна Найдите его объем 2 Ответ: 8 Решение Если ребро куба равно a, то его диагональ равна. Отсюда следует,
Отрезок AB длины 1 вращается вокруг прямой c, параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Б. Кавальери Бонавентуре Кавальери (1598 – 1647) принадлежат труды по тригонометрии, логарифмам, геометрической оптике и т.д., но главным делом его жизни.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
ПОВОРОТ Пусть теперь в пространстве задана прямая a и точка A, не принадлежащая этой прямой. Через точку A проведем плоскость α, перпендикулярную прямой.
ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
ПОВОРОТ Пусть теперь в пространстве задана прямая a и точка A, не принадлежащая этой прямой. Через точку A проведем плоскость α, перпендикулярную прямой.
ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
ПИРАМИДА Типовые задачи В Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в четыре раза? 2. Во сколько раз увеличится площадь.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема.
Материал для подготовки к ЕГЭ (ГИА) по алгебре (11 класс) по теме: Презентация для подготовки к ЕГЭ по математике В 10
ОРТОГОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
ПЛОЩАДЬ ПОВЕРХНОСТИ МНОГОГРАННИКА Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников.
Транксрипт:

ОБЪЕМ ПИРАМИДЫ Теорема. Объем пирамиды равен одной третьей произведения площади ее основания на высоту. Доказательство. Рассмотрим случай треугольной пирамиды. Пусть A 1 ABC треугольная пирамида. Достроим ее до призмы ABCA 1 B 1 C 1. Плоскости, проходящие через точки B, C, A 1 и C, B 1, A 1 разбивают эту призму на три пирамиды A 1 ABC, A 1 CBB 1 и A 1 CB 1 C 1 с вершинами в точке A 1. Пирамиды A 1 CBB 1 и A 1 CB 1 C 1 имеют равные основания CBB 1 и CB 1 C 1. Кроме этого, данные пирамиды имеют общую вершину, а их основания лежат в одной плоскости. Значит, эти пирамиды имеют общую высоту. Следовательно, эти пирамиды имеют равные объемы. Рассмотрим теперь пирамиды A 1 ABC и CA 1 B 1 C 1. Они имеют равные основания ABC и A 1 B 1 C 1 и равные высоты. Следовательно, они имеют равные объемы. Таким образом, объемы всех трех пирамид равны. Учитывая, что объем призмы равен произведению площади основания на высоту, получим формулу объема треугольной пирамиды где S - площадь основания пирамиды, h - ее высота.

ОБЪЕМ ПИРАМИДЫ Пусть теперь дана пирамида, в основании которой - многоугольник. Рассмотрим треугольную пирамиду с такой же высотой и такой же площадью основания. По теореме предыдущего параграфа объемы этих пирамид равны и, следовательно, имеет место формула где S - площадь основания пирамиды, h - ее высота.

Упражнение 1 Вершинами пирамиды являются все вершины одного основания и одна вершина другого основания призмы. Какую часть объема призмы составляет объем пирамиды? Ответ: Одна треть.

Упражнение 2 Найдите объем пирамиды, высота которой 3, а в основании - прямоугольник со сторонами 1 и 2. Ответ: 2.

Упражнение 3 Найдите объем правильной треугольной пирамиды, сторона основания которой равна 1, высота – 2. Ответ:

Упражнение 4 В правильной четырехугольной пирамиде высота 3 м, боковое реб­ро 5 м. Найдите ее объем. Ответ: 32 м 3.

Упражнение 5 Найдите объем правильной четырехугольной пирамиды, если ее диагональным сечением является правильный треугольник со стороной, равной 1. Ответ: Решение. Пусть ACS – правильный треугольник. Его высота SO равна Сторона основания равна Следовательно, объем призмы равен

Упражнение 6 Найдите объем тетраэдра с ребром, равным 1. Ответ: Решение. Пусть E – середина ребра BC. В треугольнике ADE AE = DE = Высота DH равна Площадь треугольника ABC равна Следовательно, объем тетраэдра равен

Упражнение 7 Объем правильной шестиугольной пирамиды 6 см 3. Сторона основания 1 см. Найдите боковое ребро. Ответ: 7 см.

Упражнение 8 Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 1. Найдите объем пирамиды. Ответ: Решение. Примем треугольник ABS за основание пирамиды. Тогда SC будет высотой. Объем пирамиды равен

Упражнение 9 Найдите объем треугольной пирамиды, если длина каждого ее бокового ребра равна 1, а плоские углы при вершине равны 60°, 90° и 90°. Ответ: Решение. Примем треугольник ABS за основание пирамиды. Тогда SC будет высотой. Объем пирамиды равен

Упражнение 10 Основанием пирамиды является равносторонний треугольник со стороной, равной 1. Две ее боковые грани перпендикулярны плоскости основания, а третья образует с основанием угол 60 о. Найдите объем пирамиды. Ответ: Решение. Площадь треугольника ABC равна Высота SA равна Следовательно, объем пирамиды равен

Упражнение 11 Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом Высота пирамиды равна 3 см. Найдите объем пирамиды. Ответ: 6. Решение. Треугольник SAD равносторонний со стороной AB = GH = Площадь прямоугольника ABCD равна 6. Следовательно, объем пирамиды равен 6.

Упражнение 12 В основании пирамиды лежит прямоугольный треугольник, один из катетов которого равен 3 см, а прилежащий к нему острый угол равен 30 о. Все боковые ребра пирамиды наклонены к плоскости основания под углом 60 о. Найдите объем пирамиды. Ответ: Решение. Площадь треугольника ABC равна Основанием высоты SH служит середина AC. Треугольник SAC равносторонний со стороной, равной Его высота равна 3. Следовательно, объем пирамиды равен

Упражнение 13 Боковые грани пирамиды, в основании которой лежит ромб, наклонены к плоскости основания под углом 30 о. Диагонали ромба равны 10 см и 24 см. Найдите объем пирамиды. Ответ: см 3. Решение. Площадь основания пирамиды равна 120 см 2. Сторона основания равна 13 см. Высота ромба равна Высота пирамиды равна Следовательно, объем пирамиды равен

Упражнение 14 Пирамида, объем которой равен 1, а в основании лежит прямоугольник, пересечена четырьмя плоскостями, каждая из которых проходит через вершину пирамиды и середины смежных сторон основания. Определите объем оставшейся части пирамиды. Ответ:

Упражнение 15 Сторона основания правильной шестиугольной пирамиды 1, а угол между боковой гранью и основанием 45 о. Найдите объем пирамиды. Ответ:

Упражнение 16 В куб с ребром, равным 1, вписан правильный тетраэдр таким образом, что его вершины совпадают с четырьмя вершинами куба. Определите объем тетраэдра. Ответ:

Упражнение 17 Найдите объем октаэдра с ребром, равным 1. Ответ: Решение. Октаэдр состоит из двух правильных четырехугольных пирамид со стороной основания 1 и высотой Следовательно, Объем октаэдра равен

Упражнение 18 Центры граней куба, ребро которого равно 1, служат вершинами октаэдра. Определите его объем. Ответ:

Упражнение 19 Развертка треугольной пирамиды представляет собой квадрат со стороной 1. Найдите объем этой пирамиды. Ответ: Решение. Основанием пирамиды будет прямоугольный треугольник ABC с катетами, равными 0,5. Высота пирамиды будет равна стороне квадрата. Следовательно, объем пирамиды равен

Упражнение 20 Плоскость проходит через сторону основания треугольной пирамиды и делит противоположное боковое ребро в отношении 1 : 2, считая от вершины. В каком отношении эта плоскость делит объем пирамиды? Ответ: 1 : 2.

Упражнение 21 Плоскость пересекает ребра SA, SB, SC треугольной пирамиды SABC в точках A, B, C соответственно. Найдите объем пирамиды SABC, если объем исходной пирамиды равен 1 и SA : SA = 1 : 2, SB : SB = 2 : 3, SC : SC = 3 : 4. Ответ: 1/4. Решение. Площадь треугольника SAB составляет 1/3 площади треугольника SAB. Высота, опущенная из точки C составляет 3/4 высоты, опущенной из вершины С. Следовательно, объем пирамиды SABC равен 1/4.

Упражнение 22 Два противоположных ребра тетраэдра перпендикулярны и равны 3. Расстояние между ними равно 2. Найдите объем тетраэдра. Ответ: 3. Решение. Пусть AB перпендикулярно CD. Проведем сечение ADE перпендикулярное BC. Площадь треугольника ADE равна 3. Объем пирамиды равен 3.

Упражнение 23 Два противоположных ребра тетраэдра образуют угол 60 о и равны 2. Расстояние между ними равно 3. Найдите объем тетраэдра. Ответ: Решение. Пусть угол между AB и CD равен 60 о. Проведем общий перпендикуляр EG. Площадь треугольника ADE равна 3. Объем пирамиды равен

Упражнение 24 Одно ребро тетраэдра равно 6. Все остальные ребра равны 4. Найдите объем тетраэдра. Ответ: Решение. Пусть BC = 6. Обозначим E середину BC. AE = DE = Высота EG треугольника ADE равна Его площадь равна Объем пирамиды равен

Упражнение 25 Два куба с ребром a имеют общую диагональ, но один повернут вокруг этой диагонали на угол 60° по отношению к другому. Найдите объем их общей части. Ответ: Общая часть является правильной 6-й бипирамидой со стороной основания и Высотой Объем этой бипирамиды равен

Упражнение 26 Два правильных тетраэдра с ребрами a имеют общую высоту. Один из них повернут на 60° по отношению к другому. Найдите объем их общей части. Ответ:

Упражнение 27 Два правильных тетраэдра с ребрами a имеют общую высоту. Вершина одного из них лежит в центре основания другого и наоборот. Стороны оснований тетраэдров попарно параллельны. Найдите объем общей части этих тетраэдров. Ответ:

Упражнение 28 Два правильных тетраэдра с ребрами a имеют общую высоту. Вершина одного из них лежит в центре основания другого и наоборот. Основание одного из тетраэдров повернуто на 60° по отношению к основанию другого. Найдите объем общей части этих тетраэдров. Ответ:

Упражнение 29 Два правильных тетраэдра с ребрами a имеют общий отрезок, соединяющий середины двух противоположных ребер. Один тетраэдр повернут на 90° по отношению к другому. Найдите объем их общей части. Ответ: Общей частью является октаэдр (правильная 4-я бипирамида) с ребром Его объем равен

Упражнение 30 Октаэдр с ребром 1 повернут вокруг прямой, соединяющей противоположные вершины, на угол 45 о. Найдите объем общей части исходного октаэдра и повернутого? Ответ: Общей частью является правильная 8-я бипирамида с площадью основания и высотой Ее объем равен