Скачать презентацию

Идет загрузка презентации. Пожалуйста, подождите

Презентация была опубликована год назад пользователемВалентина Болтенкова

1 Chap 5-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 5 Discrete Random Variables and Probability Distributions Statistics for Business and Economics 6 th Edition

2 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-2 Chapter Goals After completing this chapter, you should be able to: Interpret the mean and standard deviation for a discrete random variable Use the binomial probability distribution to find probabilities Describe when to apply the binomial distribution Use the hypergeometric and Poisson discrete probability distributions to find probabilities Explain covariance and correlation for jointly distributed discrete random variables

3 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-3 Introduction to Probability Distributions Random Variable Represents a possible numerical value from a random experiment Random Variables Discrete Random Variable Continuous Random Variable Ch. 5Ch. 6

4 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-4 Discrete Random Variables Can only take on a countable number of values Examples: Roll a die twice Let X be the number of times 4 comes up (then X could be 0, 1, or 2 times) Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)

5 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-5 Experiment: Toss 2 Coins. Let X = # heads. T T Discrete Probability Distribution 4 possible outcomes T T H H HH Probability Distribution x x Value Probability 0 1/4 = /4 = /4 = Probability Show P(x), i.e., P(X = x), for all values of x:

6 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-6 P(x) 0 for any value of x The individual probabilities sum to 1; (The notation indicates summation over all possible x values) Probability Distribution Required Properties

7 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-7 Cumulative Probability Function The cumulative probability function, denoted F(x 0 ), shows the probability that X is less than or equal to x 0 In other words,

8 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-8 Expected Value Expected Value (or mean) of a discrete distribution (Weighted Average) Example: Toss 2 coins, x = # of heads, compute expected value of x: E(x) = (0 x.25) + (1 x.50) + (2 x.25) = 1.0 x P(x)

9 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-9 Variance and Standard Deviation Variance of a discrete random variable X Standard Deviation of a discrete random variable X

10 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-10 Standard Deviation Example Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(x) = 1) Possible number of heads = 0, 1, or 2

11 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-11 Functions of Random Variables If P (x) is the probability function of a discrete random variable X, and g(X) is some function of X, t hen the expected value of function g is

12 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-12 Linear Functions of Random Variables Let a and b be any constants. a) i.e., if a random variable always takes the value a, it will have mean a and variance 0 b) i.e., the expected value of b·X is b·E(x)

13 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-13 Linear Functions of Random Variables Let random variable X have mean µ x and variance σ 2 x Let a and b be any constants. Let Y = a + bX Then the mean and variance of Y are so that the standard deviation of Y is (continued)

14 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-14 Probability Distributions Continuous Probability Distributions Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions Uniform Normal Exponential Ch. 5Ch. 6

15 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-15 The Binomial Distribution Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions

16 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-16 Bernoulli Distribution Consider only two outcomes: success or failure Let P denote the probability of success Let 1 – P be the probability of failure Define random variable X: x = 1 if success, x = 0 if failure Then the Bernoulli probability function is

17 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-17 Bernoulli Distribution Mean and Variance The mean is µ = P The variance is σ 2 = P(1 – P)

18 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-18 Sequences of x Successes in n Trials The number of sequences with x successes in n independent trials is : Where n! = n·(n – 1)·(n – 2)·... ·1 and 0! = 1 These sequences are mutually exclusive, since no two can occur at the same time

19 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-19 Binomial Probability Distribution A fixed number of observations, n e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse Two mutually exclusive and collectively exhaustive categories e.g., head or tail in each toss of a coin; defective or not defective light bulb Generally called success and failure Probability of success is P, probability of failure is 1 – P Constant probability for each observation e.g., Probability of getting a tail is the same each time we toss the coin Observations are independent The outcome of one observation does not affect the outcome of the other

20 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-20 Possible Binomial Distribution Settings A manufacturing plant labels items as either defective or acceptable A firm bidding for contracts will either get a contract or not A marketing research firm receives survey responses of yes I will buy or no I will not New job applicants either accept the offer or reject it

21 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-21 P(x) = probability of x successes in n trials, with probability of success P on each trial x = number of successes in sample, (x = 0, 1, 2,..., n) n = sample size (number of trials or observations) P = probability of success P(x) n x ! nx P(1- P) X n X ! ( ) ! Example: Flip a coin four times, let x = # heads: n = 4 P = P = ( ) = 0.5 x = 0, 1, 2, 3, 4 Binomial Distribution Formula

22 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-22 Example: Calculating a Binomial Probability What is the probability of one success in five observations if the probability of success is 0.1? x = 1, n = 5, and P = 0.1

23 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-23 n = 5 P = 0.1 n = 5 P = 0.5 Mean x P(x) x P(x) 0 Binomial Distribution The shape of the binomial distribution depends on the values of P and n Here, n = 5 and P = 0.1 Here, n = 5 and P = 0.5

24 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-24 Binomial Distribution Mean and Variance Mean Variance and Standard Deviation Wheren = sample size P = probability of success (1 – P) = probability of failure

25 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-25 n = 5 P = 0.1 n = 5 P = 0.5 Mean x P(x) x P(x) 0 Binomial Characteristics Examples

26 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-26 Using Binomial Tables Nx…p=.20p=.25p=.30p=.35p=.40p=.45p= ………………………………………………………… Examples: n = 10, x = 3, P = 0.35: P(x = 3|n =10, p = 0.35) =.2522 n = 10, x = 8, P = 0.45: P(x = 8|n =10, p = 0.45) =.0229

27 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-27 Using PHStat Select PHStat / Probability & Prob. Distributions / Binomial…

28 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-28 Using PHStat Enter desired values in dialog box Here:n = 10 p =.35 Output for x = 0 to x = 10 will be generated by PHStat Optional check boxes for additional output (continued)

29 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-29 P(x = 3 | n = 10, P =.35) =.2522 PHStat Output P(x > 5 | n = 10, P =.35) =.0949

30 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-30 The Hypergeometric Distribution Binomial Poisson Probability Distributions Discrete Probability Distributions Hypergeometric

31 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-31 The Hypergeometric Distribution n trials in a sample taken from a finite population of size N Sample taken without replacement Outcomes of trials are dependent Concerned with finding the probability of X successes in the sample where there are S successes in the population

32 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-32 Hypergeometric Distribution Formula Where N = population size S = number of successes in the population N – S = number of failures in the population n = sample size x = number of successes in the sample n – x = number of failures in the sample

33 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-33 Using the Hypergeometric Distribution Example: 3 different computers are checked from 10 in the department. 4 of the 10 computers have illegal software loaded. What is the probability that 2 of the 3 selected computers have illegal software loaded? N = 10n = 3 S = 4 x = 2 The probability that 2 of the 3 selected computers have illegal software loaded is 0.30, or 30%.

34 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-34 Hypergeometric Distribution in PHStat Select: PHStat / Probability & Prob. Distributions / Hypergeometric …

35 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-35 Hypergeometric Distribution in PHStat Complete dialog box entries and get output … N = 10 n = 3 S = 4 x = 2 P(X = 2) = 0.3 (continued)

36 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-36 The Poisson Distribution Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions

37 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-37 The Poisson Distribution Apply the Poisson Distribution when: You wish to count the number of times an event occurs in a given continuous interval The probability that an event occurs in one subinterval is very small and is the same for all subintervals The number of events that occur in one subinterval is independent of the number of events that occur in the other subintervals There can be no more than one occurrence in each subinterval The average number of events per unit is (lambda)

38 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-38 Poisson Distribution Formula where: x = number of successes per unit = expected number of successes per unit e = base of the natural logarithm system ( )

39 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-39 Poisson Distribution Characteristics Mean Variance and Standard Deviation where = expected number of successes per unit

40 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-40 Using Poisson Tables X Example: Find P(X = 2) if =.50

41 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-41 Graph of Poisson Probabilities X = P(X = 2) =.0758 Graphically: =.50

42 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-42 Poisson Distribution Shape The shape of the Poisson Distribution depends on the parameter : = 0.50 = 3.00

43 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-43 Poisson Distribution in PHStat Select: PHStat / Probability & Prob. Distributions / Poisson…

44 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-44 Poisson Distribution in PHStat Complete dialog box entries and get output … P(X = 2) = (continued)

45 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-45 Joint Probability Functions A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y The marginal probabilities are

46 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-46 Conditional Probability Functions The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X. Similarly, the conditional probability function of X, given Y = y is:

47 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-47 Independence The jointly distributed random variables X and Y are said to be independent if and only if their joint probability function is the product of their marginal probability functions: for all possible pairs of values x and y A set of k random variables are independent if and only if

48 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-48 Covariance Let X and Y be discrete random variables with means μ X and μ Y The expected value of (X - μ X )(Y - μ Y ) is called the covariance between X and Y For discrete random variables An equivalent expression is

49 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-49 Covariance and Independence The covariance measures the strength of the linear relationship between two variables If two random variables are statistically independent, the covariance between them is 0 The converse is not necessarily true

50 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-50 Correlation The correlation between X and Y is: ρ = 0 no linear relationship between X and Y ρ > 0 positive linear relationship between X and Y when X is high (low) then Y is likely to be high (low) ρ = +1 perfect positive linear dependency ρ < 0 negative linear relationship between X and Y when X is high (low) then Y is likely to be low (high) ρ = -1 perfect negative linear dependency

51 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-51 Portfolio Analysis Let random variable X be the price for stock A Let random variable Y be the price for stock B The market value, W, for the portfolio is given by the linear function (a is the number of shares of stock A, b is the number of shares of stock B)

52 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-52 Portfolio Analysis The mean value for W is The variance for W is or using the correlation formula (continued)

53 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-53 Example: Investment Returns Return per $1,000 for two types of investments P(x i y i ) Economic condition Passive Fund X Aggressive Fund Y.2 Recession- $ 25 - $200.5 Stable Economy Expanding Economy Investment E(x) = μ x = (-25)(.2) +(50)(.5) + (100)(.3) = 50 E(y) = μ y = (-200)(.2) +(60)(.5) + (350)(.3) = 95

54 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-54 Computing the Standard Deviation for Investment Returns P(x i y i ) Economic condition Passive Fund X Aggressive Fund Y 0.2 Recession- $ 25 - $ Stable Economy Expanding Economy Investment

55 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-55 Covariance for Investment Returns P(x i y i ) Economic condition Passive Fund X Aggressive Fund Y.2 Recession- $ 25 - $200.5 Stable Economy Expanding Economy Investment

56 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-56 Portfolio Example Investment X: μ x = 50 σ x = Investment Y: μ y = 95 σ y = σ xy = 8250 Suppose 40% of the portfolio (P) is in Investment X and 60% is in Investment Y: The portfolio return and portfolio variability are between the values for investments X and Y considered individually

57 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-57 Interpreting the Results for Investment Returns The aggressive fund has a higher expected return, but much more risk μ y = 95 > μ x = 50 but σ y = > σ x = The Covariance of 8250 indicates that the two investments are positively related and will vary in the same direction

58 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chap 5-58 Chapter Summary Defined discrete random variables and probability distributions Discussed the Binomial distribution Discussed the Hypergeometric distribution Reviewed the Poisson distribution Defined covariance and the correlation between two random variables Examined application to portfolio investment

Еще похожие презентации в нашем архиве:

© 2017 MyShared Inc.

All rights reserved.