Другие доказательства теоремы Пифагора Выполнила: ученица 8 класса Хонюкова Валентина.

Презентация:



Advertisements
Похожие презентации
Самые интересные доказательства теоремы Пифагора
Advertisements

Различные доказательства теоремы Пифагора Выполнили: Кочеткова Софья 11 Б Козлова Вика 8Б, Газиев Юра 8Б Руководитель проекта: Филиппова Н.С. Москва 2009.
Теорема Пифагора Работа ученика 8-го «А» класса Пугача Павла.
Проект по математике «Треугольник простейший и неисчерпаемый» Выполнили: ученики 9 академического класса Каширин Егор и Золотарев Алексей.
Проект – презентация на тему: «Доказательства теоремы Пифагора» Выполнила: ученица 8 «А» класса МОУ СОШ 2 Шишкина Е.
«Пифагор и его теорема». Биография Пифагора Философ, педагог, ученый Пифагор родился в Сидоне, Финикия, около 570 года до нашей эры. Отец Пифагора, Мнесарх,
Теорема Пифагора Квадрат гипотенузы равен сумме квадратов катетов.
Пифагор И теорема. Работа ученицы 8 класса «в» Опариной Вероники.
Теорема Пифагора Презентацию подготовила: Ученица 9«Б» класса СОШ 25 П.Энем, Тахтамукайского района Катаева Марианна.
Работа ученицы 9Б класса Медведевой Ларисы. Руководитель: Малышева Р. Н.
Пифагор Пифагор (580–500 гг. до н. э.) - один из величайших ученых Древней Греции, а теорема Пифагора - одна из самых красивых в геометрии. Школа Пифагора.
Теорема Пифагора и неизвестные способы ее доказательства.
Золотое сечение Золотым сечением называется такое делением целого на две неравные части, при котором меньшая часть так относится к большей, как большая.
Теорема Пифагора. Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
По страницам учебника геометрии Многоугольником называется геометрическая фигура, состоящая из n вершин и n сторон.
§4. Трапеция.. Задача 4 из диагностической работы Найдите площадь трапеции с основаниями 18 и 13 и боковыми сторонами 3 и Дополнительное построение.
1.1. Пропорциональные отрезки Определение подобных треугольников 1.2. Определение подобных треугольников 1.3. Отношение площадей подобных треугольников.
Оглавление: Многоугольники Четырехугольник Свойства четырехугольника Свойство диагоналей выпуклого четырехугольника Характеристическое свойство фигуры.
Теорема Пифагора Выполнил ученик 8а класса Рякин Илья.
Площадь Учитель математики МОУ лицея 18 И.В.Дымова Презентация уроков по геометрии 8 класс по главе учебника.
Транксрипт:

Другие доказательства теоремы Пифагора Выполнила: ученица 8 класса Хонюкова Валентина

Доказательство Евклида Это доказательство было приведено Евклидом в его «Началах». По свидетельству Прокла, оно придумано самим Евклидом. Это доказательство было приведено Евклидом в его «Началах». По свидетельству Прокла, оно придумано самим Евклидом. Доказательство Евклида приведено в приложении 47 первой книги «Начал». Доказательство Евклида приведено в приложении 47 первой книги «Начал».

На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе. На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе. В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними: В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними: FB = AB, BC = BD FB = AB, BC = BD РFBC = d + РABC = РABD РFBC = d + РABC = РABD Но Но SABD = 1/2 S BJLD, SABD = 1/2 S BJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично SFBC=1\2S ABFH SFBC=1\2S ABFH (BF-общее основание, АВ-общая высота). Отсюда, учитывая, что (BF-общее основание, АВ-общая высота). Отсюда, учитывая, что SABD=SFBC, SABD=SFBC, имеем имеем SBJLD=SABFH. SBJLD=SABFH. Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что SJCEL=SACKG. SJCEL=SACKG. Итак, Итак, SABFH+SACKG= SBJLD+SJCEL= SBCED, SABFH+SACKG= SBJLD+SJCEL= SBCED, что и требовалось доказать. что и требовалось доказать.

Упрощённое доказательство Евклида Как в доказательствах методом разложения, так и при доказательстве евклидового типа можно исходить из любого расположения квадратов. Иногда при этом удается достигнуть упрощений. Как в доказательствах методом разложения, так и при доказательстве евклидового типа можно исходить из любого расположения квадратов. Иногда при этом удается достигнуть упрощений. Пусть квадрат, построенный на одном из катетов (на рисунке это квадрат,построенный на большем катете), расположен с той же стороны катета, что и сам треугольник. Тогда продолжение противоположной катету стороны этого квадрата проходит через вершину квадрата, построенного на гипотенузе. Доказательство в этом случае оказывается совсем простым, т. к. здесь достаточно сравнить площади интересующих нас фигур с площадью одного треугольника(он заштрихован) - площадь этого треугольника равна половине площади квадрата и одновременно половине площади прямоугольника Пусть квадрат, построенный на одном из катетов (на рисунке это квадрат,построенный на большем катете), расположен с той же стороны катета, что и сам треугольник. Тогда продолжение противоположной катету стороны этого квадрата проходит через вершину квадрата, построенного на гипотенузе. Доказательство в этом случае оказывается совсем простым, т. к. здесь достаточно сравнить площади интересующих нас фигур с площадью одного треугольника(он заштрихован) - площадь этого треугольника равна половине площади квадрата и одновременно половине площади прямоугольника

Доказательство Хоукинсa. Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать. Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать. Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В. Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В). Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В. Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В). SCAA'=b²/2 SCAA'=b²/2 SCBB'=a²/2 SCBB'=a²/2 SA'AB'B=(a²+b²)/2 SA'AB'B=(a²+b²)/2 Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому : Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому : SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2 SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2 Сревнивая два полученных выражения для площади, получим: Сревнивая два полученных выражения для площади, получим: a²+b²=c² a²+b²=c² Теорема доказана. Теорема доказана.

Доказательство Вальдхейма. Это доказательство также имеет вычислительный характер. Можно использовать рисунки для доказательства основанного на вычислении площадей двумя способами. Это доказательство также имеет вычислительный характер. Можно использовать рисунки для доказательства основанного на вычислении площадей двумя способами. Для того чтобы доказать теорему пользуясь первым рисунком достаточно только выразить площадь трапеции двумя путями. Для того чтобы доказать теорему пользуясь первым рисунком достаточно только выразить площадь трапеции двумя путями. Sтрапеции=(a+b)²/2 Sтрапеции=(a+b)²/2 Sтрапеции=a²b²+c²/2 Sтрапеции=a²b²+c²/2 При ревнивая правые части получим: При ревнивая правые части получим: a²+b²=c² a²+b²=c² Теорема доказана. Теорема доказана.

Доказательство основанное на теории подобия. В прямоугольном треугольника АВС проведем из вершины прямого угла высоту CD; тогда треугольник разобьется на два треугольника, также являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику. Это легко доказать, пользуясь первым признаком подобия(по двум углам). В самом деле, сразу видно что, кроме прямого угла, треугольники АВС и ACD имеют общий угол a, треугольники CBD и АВС - общий угол b. То, что малые треугольники также подобны друг другу, следует из того, что каждый из них подобен большому треугольнику. Впрочем, это можно установить и непосредственно. В прямоугольном треугольника АВС проведем из вершины прямого угла высоту CD; тогда треугольник разобьется на два треугольника, также являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику. Это легко доказать, пользуясь первым признаком подобия(по двум углам). В самом деле, сразу видно что, кроме прямого угла, треугольники АВС и ACD имеют общий угол a, треугольники CBD и АВС - общий угол b. То, что малые треугольники также подобны друг другу, следует из того, что каждый из них подобен большому треугольнику. Впрочем, это можно установить и непосредственно. Доказательство индийского математика Басхары изображено на рисунке. В пояснение к нему он написал только одну строчку: "Смотри!". Ученые считают, что он выражал площадь квадрата,построенного на гипотенузе, как сумму площадей треугольников (4ab/2) и площадь квадрата (a-b)². Следовательно: Доказательство индийского математика Басхары изображено на рисунке. В пояснение к нему он написал только одну строчку: "Смотри!". Ученые считают, что он выражал площадь квадрата,построенного на гипотенузе, как сумму площадей треугольников (4ab/2) и площадь квадрата (a-b)². Следовательно: c²=4ab/2+(a-b)² c²=4ab/2+(a-b)² c=2ab+a²-2ab+b² c=2ab+a²-2ab+b² c²=a²+b² c²=a²+b² Теорема доказана. Теорема доказана.

Луночки Гиппократа Для того, чтобы доказать теорему о гиппократовых луночках, докажем следующее предложение: Если на катетах и на гипотенузе прямоугольного треугольника построены какие угодно подобные между собой фигуры Fa, Fb, Fc, так, что катеты и гипотенуза являются сходственными отрезками этих фигур, то имеет место равенство: Fa+Fb=Fc. Для доказательства воспользуемся следующей теоремой из теории подобия: площади подобных многоугольников относятся как квадраты сходственных сторон. Если через Fa, Fb, Fc обозначить площади подобных многоугольников, построенных на катетах a, b и гипотенузе с прямоугольного треугольника, то согласно вспомогательной теореме можно написать: Для того, чтобы доказать теорему о гиппократовых луночках, докажем следующее предложение: Если на катетах и на гипотенузе прямоугольного треугольника построены какие угодно подобные между собой фигуры Fa, Fb, Fc, так, что катеты и гипотенуза являются сходственными отрезками этих фигур, то имеет место равенство: Fa+Fb=Fc. Для доказательства воспользуемся следующей теоремой из теории подобия: площади подобных многоугольников относятся как квадраты сходственных сторон. Если через Fa, Fb, Fc обозначить площади подобных многоугольников, построенных на катетах a, b и гипотенузе с прямоугольного треугольника, то согласно вспомогательной теореме можно написать: Fa/Fb/Fc=a²/b²/c². Fa/Fb/Fc=a²/b²/c². Эта пропорция означает,что можно найти число k (коэффициент пропорциональности) такое, что Эта пропорция означает,что можно найти число k (коэффициент пропорциональности) такое, что Fa=ka² Fb=kb² Fc=kc². Fa=ka² Fb=kb² Fc=kc².. Умножив обе части равенства на k и принимая во внимание предыдущие равенства, получим: Умножив обе части равенства на k и принимая во внимание предыдущие равенства, получим: Fa+Fb=Fc. Fa+Fb=Fc. Если равенство Fa+Fb=Fc имеет место хотя бы для одной тройки подобных между собой многоугольников, построенных на катетах и на гипотенузе прямоугольного треугольника АВС так, что АС, ВС и АВ есть сходственные отрезки этих многоугольников, то Если равенство Fa+Fb=Fc имеет место хотя бы для одной тройки подобных между собой многоугольников, построенных на катетах и на гипотенузе прямоугольного треугольника АВС так, что АС, ВС и АВ есть сходственные отрезки этих многоугольников, то ka²+kb²=kc² ka²+kb²=kc² (где k имеет какое-то определенное значение, зависящее от выбора многоугольников, - нам совершенно не важно, какое именно). Но отсюда вытекает, что (где k имеет какое-то определенное значение, зависящее от выбора многоугольников, - нам совершенно не важно, какое именно). Но отсюда вытекает, что а²+b²=с², а²+b²=с², а это влечет за собой тот факт,что равенство Fa+Fb=Fc выполняется для любых построенных на сторонах прямоугольного треугольника подобных многоугольников, в частности, и для квадратов. а это влечет за собой тот факт,что равенство Fa+Fb=Fc выполняется для любых построенных на сторонах прямоугольного треугольника подобных многоугольников, в частности, и для квадратов.

Познакомимся с одним интересным предложением, которое встречается во многих учебниках геометрии под названием теоремы о Гиппократовых луночках. Познакомимся с одним интересным предложением, которое встречается во многих учебниках геометрии под названием теоремы о Гиппократовых луночках. Гиппократ Хиосский (вторая половина пятого века до н. э., Афины) занимался квадратурой луночек. Он называл луночкой часть плоскости, ограниченную двумя дугами окружностей. Наше предложение в том виде, как оно будет здесь сформулировано, не встречается у самого Гипократа, который нашел квадратуру только для некоторых луночек. Во всей общности теорему доказал араб Ибн Альхаитам: Гиппократ Хиосский (вторая половина пятого века до н. э., Афины) занимался квадратурой луночек. Он называл луночкой часть плоскости, ограниченную двумя дугами окружностей. Наше предложение в том виде, как оно будет здесь сформулировано, не встречается у самого Гипократа, который нашел квадратуру только для некоторых луночек. Во всей общности теорему доказал араб Ибн Альхаитам: "Если на гипотенузе прямоугольного треугольника как на диаметре описать полуокружность, лежащую с той же стороны гипотенузы, что и сам треугольник, то она пройдет через вершину прямого угла." Эту теорему греки приписывали Фалесу Милетскому, но в действительности ее знали еще древние вавилоняне. "Если на гипотенузе прямоугольного треугольника как на диаметре описать полуокружность, лежащую с той же стороны гипотенузы, что и сам треугольник, то она пройдет через вершину прямого угла." Эту теорему греки приписывали Фалесу Милетскому, но в действительности ее знали еще древние вавилоняне. Опишем две полуокружности на катетах так, как указано на рисунке, тогда получатся две луночки. Пусть Ка,Кв,Кс- площади полукругов, построенных на катетах и гипотенузе. Согласно теореме, рассмотренной ранее, имеем: Опишем две полуокружности на катетах так, как указано на рисунке, тогда получатся две луночки. Пусть Ка,Кв,Кс- площади полукругов, построенных на катетах и гипотенузе. Согласно теореме, рассмотренной ранее, имеем: Ка+Кb=Кс. Ка+Кb=Кс. Этот же результат можно получить, умножив обе части равенстваА²+В²=С² на π/8. Этот же результат можно получить, умножив обе части равенстваА²+В²=С² на π/8. В самом деле, равенство В самом деле, равенство (π/8)А+(π/8)В=(π/8)С (π/8)А+(π/8)В=(π/8)С означает,что площадь полукруга С диаметром с равна сумме площадей двух других полукругов, с диаметрами a и b. Если мы отнимем те же части(на рисунке они не заштрихованы )как от полукруга,построенного на гипотенузе, так и от полукругов, построенных на катетах, то, вследствие только что доказанной теоремы, получим, что сумма площадей луночек равна площади треугольника. означает,что площадь полукруга С диаметром с равна сумме площадей двух других полукругов, с диаметрами a и b. Если мы отнимем те же части(на рисунке они не заштрихованы )как от полукруга,построенного на гипотенузе, так и от полукругов, построенных на катетах, то, вследствие только что доказанной теоремы, получим, что сумма площадей луночек равна площади треугольника.

Векторное док-во Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство:b+c=a Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство:b+c=a откуда имеем откуда имеем c = a - b c = a - b возводя обе части в квадрат, получим возводя обе части в квадрат, получим c²=a²+b²-2ab c²=a²+b²-2ab Так как a перпендикулярно b, то ab=0, откуда Так как a перпендикулярно b, то ab=0, откуда c²=a²+b² или c²=a²+b² c²=a²+b² или c²=a²+b² Нами снова доказана теорема Пифагора. Нами снова доказана теорема Пифагора. Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов, обобщающую теорему Пифагора. Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов, обобщающую теорему Пифагора.