Определение: выпуклый многоугольник называется правильным, если у него все стороны и все углы равны.. Квадрат Правильный треугольник Правильный восьмиугольник.

Презентация:



Advertisements
Похожие презентации
Построение правильного пятиугольника "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем.
Advertisements

Правильные многогранники. План изучения темы 1. Симметрия в пространстве, виды симметрии 2. Примеры симметрии в окружающем нас мире 3. Правильный многогранник,
Симметрия относительно точки Симметрия относительно прямой А А 1 А 1 А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии),
МНОГОУГОЛЬНИКИ Подготовил ученик 8 «А» кл. Кечемайкин Макар.
РЕФЕРАТ по математике «ЗОЛОТОЕ СЕЧЕНИЕ – ГАРМОНИЧЕСКАЯ ПРОПОРЦИЯ» Выполнила: учащаяся 6 «А» класса Миронова Екатерина Ивановна Научный руководитель: Учитель.
Правильные выпуклые многогранники Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник.
Выполнила Абрамова Виктория Александровна Определение Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр Таблица Историческая справка Это интересно.
Многогранники были известны в Древнем Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса.
Конференция по теме Построение правильных многоугольников циркулем и линейкой.
Автор: Зорина Елена Борисовна, учитель ГБОУ 246 Санкт-Петербурга.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ «Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных.
- это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.
Многогранники вокруг нас или мы внутри многогранника?
Теория многогранников, в частности выпуклых многогранников, - одна из самых увлекательных глав геометрии. Теория многогранников, в частности выпуклых.
Многогранники были известны в Древнем Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса.
Работу выполнила ученица 10 класса Кириллова Анастасия Алексеевна Руководитель: учитель математики Кириллова Светлана Михайловна.
Муниципальное общеобразовательное учреждение Морткинская средняя общеобразовательная школа код участника:999 Геометрия 11 класс Презентация к разделу:
Образовательная: Ввести понятие «правильного многогранника», рассмотреть все пять видов правильных многогранников, решение задач с правильными многогранниками.
1 Правильные многогранники Работу выполнил: Ученик 10 класса Мухаметшин Камиль.
содержание Правильные многогранники (Правильные многогранники (тела Платона) Тетраэдр Гексаэдр Октаэдр Додекаэдр Икосаэдр Историческая справка Где можно.
Транксрипт:

Определение: выпуклый многоугольник называется правильным, если у него все стороны и все углы равны.. Квадрат Правильный треугольник Правильный восьмиугольник Правильный шестиугольник

История Построение правильного многоугольника с "n " сторонами оставалось проблемой для математиков вплоть до XIX века. История Построение правильного многоугольника с "n " сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на "n " равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник. Такое построение идентично разделению окружности на "n " равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

Правильные многоугольники привлекали внимание древнегреческих учёных ещё задолго да Архимеда. Пифагорейцы, выбравшие эмблемой своего союза пентаграмму - пятиконечную звезду, придавали очень большое значение задаче о делении окружности на равные части, то есть о построении правильного вписанного многоугольника.

Альбрехт Дюрер ( гг), ставший олицетворением Возрождения в Германии приводит теоретически точный способ построения правильного пятиугольника, заимствованный из великого сочинения Птолемея "Альмагест". Интерес Дюрера к построению правильных многоугольников отражает использование их в Средние века в арабских и готических орнаментах, а после изобретения огнестрельного оружия - в планировке крепостей Дюрер пишет: «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Приближенное построение правильного пятиугольника представляет собой интерес. А.Дюрером оно проводится при условии неизменности раствора циркуля, что повышает точность построения.

Способ построения описан Дюрером так: "Однако пятиугольник, построенный неизменным раствором циркуля, делай так. Проведи две окружности так, чтобы каждая из них проходила через центр другой. Два центра А и В соедини прямой линией. Это и будет стороной пятиугольника. Точки пересечения окружностей обозначь сверху С, снизу D и проведи прямую линию CD. После этого возьми циркуль с неизменным раствором и, установив одну его ножку в точку D, другой проведи через оба центра А и В дугу до пересечения её с обеими окружностями. Точки пересечения обозначь через E и F, а точку пересечения с прямой CD обозначь буквой G. Теперь проведи прямую линию через Е и G до пересечения с линией окружности. Эту точку обозначь Н. Затем проведи другую линию через F и G до пересечения с линией окружности и поставь здесь J. Соединив J,A и H,B прямыми, получим три стороны пятиугольника. Дав возможность двум сторонам такой длины достигнуть совпадения в точке K из точек J и H, получим некоторый пятиугольник."

Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2 "m " сторонами (при целом "m " > 1), имея уже построенный многоугольник с числом сторон 2 "m - 1 " : пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2 "m " сторонами (при целом "m " > 1), имея уже построенный многоугольник с числом сторон 2 "m - 1 " : пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее

Платон ( гг. до н.э.) также знал о золотом делении. Его диалог "Тимей" посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

Леонардо да Винчи также много писал о многоугольниках, но именно Дюрер, а не Леонардо, передал средневековые способы построения потомкам. Дюрер, конечно, был знаком с " Началами" Евклида, но не привел в своем "Руководстве к измерению" (о построениях при помощи циркуля и линейки) предложенный Евклидом теоретически точный способ построения правильного пятиугольника.

Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, к которым, кроме 3 и 5, относятся 17, 257 и 65537, то его можно построить при помощи циркуля и линейки. Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, к которым, кроме 3 и 5, относятся 17, 257 и 65537, то его можно построить при помощи циркуля и линейки.

Вершинами октаэдра являются центры граней куба, а если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра. Полученные многоугольники оказываются действительно правильные, так как их грани – правильные треугольники. Это следует из того, что при повороте куба ребро многогранника можно перевести в любое другое.

ПЛАТОНОВЫ ТЕЛА Гексаэдр Тетраэдр Октаэдр Икосаэдр Додекаэдр Название правильных многогранников определяет число их граней: тетраэдр (4 грани), кексаэдр (6 граней), октаэдр (8 грандей), додекаэдр (12 граней) и икосаэдр (20 граней). С греческого "кедрон" переводится как грань, "тетра", "кекса" и т. д. – указанные числа граней. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба - квадраты, додекаэдра – правильные пятиугольники.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ В ФИЛОСОФСКОЙ КАРТИНЕ МИРА ПЛАТОНА Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у пламени октаэдр – олицетворял воздух куб – самая устойчивая из фигур – олицетворял землю икосаэдр – как самый обтекаемый – олицетворял воду додекаэдр символизировал весь мир

Необходимо сказать, что золотое сечение имеет большое применение в нашей жизни. Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса. Раковина наутилуса закручена подобно золотой спирали. Благодаря золотому сечению был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета. Возбуждение струны в точке, делящей её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации. На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения. Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев». Пропорция обнаружена в картине Сандро Боттичелли «Рождение Венеры» Известно много памятников архитектуры, построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича. Иоанну Кеплеру, жившему пять веков назад, принадлежит высказывание: "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении"