ХИМИЯ - это наука о веществах и их превращениях. -все вещества состоят из мельчайших, далее неделимых частиц - атомов (греч. атомос означает «неделимый»)

Презентация:



Advertisements
Похожие презентации
ХИМИЯ - это наука о веществах и их превращениях. -все вещества состоят из мельчайших, далее неделимых частиц - атомов (греч. атомос означает «неделимый»)
Advertisements

Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы.
Лекция 1( краткий конспект ) Дмитрий Воробьёв – MSc.
Химическая связь. Типы кристаллических решеток. Урок 6,7 11 класс.
В периодах с увеличением заряда ядра радиусы атомов 1) уменьшаются 2) увеличиваются В группах сверху вниз радиусы атомов 1) уменьшаются 2) увеличиваются.
ВИДЫ ХИМИЧЕСКОЙ СВЯЗИ И ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЕТОК (лекция)
Химическая связь Юрмазова Татьяна Александровна Томский политехнический университет.
Это взаимодействие, связывающее отдельные атомы в более сложные системы (молекулы, кристаллы)
ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ Цели: Дать понятия ионной, ковалентной, металлической, водородной хим.связям; Научить определять и записывать схемы образования ионной.
Обучающая презентация для учащихся 11-ых классов Разработчик: учитель химии I квалификационной категории Леонтьева Н.Л.
ХИМИЧЕСКАЯ СВЯЗЬ. Химическая связь – совокупность сил, обуславливающих взаимодействие атомов в химических соединениях.
Виды химической связи.. Принцип наименьшей энергии - электроны в атоме занимают орбитали с наименьшими из возможных значениями энергии. Иными словами,
2008 год План : 1 : Межмолекулярная связь 1 : Межмолекулярная связь 2 : Ионная связь 2 : Ионная связь 3 : Ковалентная связь 3 : Ковалентная связь 4 : Металлическая.
Химическая связь – это связь между атомами, обеспечивающая существование веществ с четко определенным составом. При образовании ковалентной химической.
Электронное строение атома. Работу выполнила Преподаватель высшей категории Перепелкина Вероника Михайловна.
Электронное строение атома. Ранние модели строения атома «Пудинг с изюмом» ( г. Дж. Томсон) «Пудинг с изюмом» ( г. Дж. Томсон) «Планетарная»
Химическая связь Учитель МОБУ СОШ ЛГО с.Пантелеймоновка Г.П. Яценко.
Химическая связь Химическая связь – это силы взаимодействия, которые соединяют отдельные атомы в молекулы, ионы, кристаллы. Способность атома элемента.
В образовании химической связи могут принимать участие: Неспаренные электроны Под химической связью понимают такое взаимодействие атомов, которое связывает.
1.ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ.ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ 2.КОВАЛЕНТНАЯ СВЯЗЬ:КОВАЛЕНТНАЯ СВЯЗЬ: а) механизм образования и разрыв связи; б) классификация; в) параметры.
Транксрипт:

ХИМИЯ - это наука о веществах и их превращениях. -все вещества состоят из мельчайших, далее неделимых частиц - атомов (греч. атомос означает «неделимый») – (, Эпикур, Демокрит, V - III вв. до н. э.) г. Планетарная модель Э. Резерфорда г. ее развил Н.Бор : 1) электрон в атоме может находиться только в стационарных состояниях с дискретными значениями энергии En, в которых атом не излучает. 2) при переходе из одного стационарного состояния в другое атом испускает или поглощает квант электромагнитного излучения с частотой = (En-Em)/h е годы квантово-механическая модель- Л. де Бройль, В. Гейзенберг, Э. Шредингер и П. Дирак. -Современная теория : -Атом – наименьшая химически неделимая частица, представляющая собой сложную электромагнитную систему, состоящую из ядра и электронов. -Ядро состоит из нейтронов и протонов По таблице Менделеева: 19 К Аr=39 -Число нейтронов = , протонов – 19. электронов Электрону - присущи как свойства волны (дифракция и интерференция), так и свойства частицы (масса, заряд) -Уравнение Л. де Бройля λ= h/mV -Часть атомного пространства, где вероятность пребывания электрона составляет свыше 90 %, называется атомной орбиталью. -Электрон в атоме движется: а) вокруг ядра. Б) вокруг своей оси

Для полного описания его движения используются 4 квантового числа: n = 1,2,3,... главное квантовое число и определяет общую энергию электрона. L - орбитальное квантовое число, принимающее значения 0, 1, 2,..., (n-1), характеризует форму орбитали, m l - магнитное квантовое число описывает направление орбитали в пространстве и принимает значения 0, 1, 2,..., L. спиновое число, которое описывает собственный момент иможет принимать лишь два значения: 1/2

Распределение электронов по орбиталям по 3 законам: Распределение электронов по орбиталям по 3 законам: 1) Принцип наименьшей энергии - в первую очередь электроны заполняют орбитали, имеющие наименьшую потенциальную энергию. 1) Принцип наименьшей энергии - в первую очередь электроны заполняют орбитали, имеющие наименьшую потенциальную энергию. Порядок следования орбиталей по энергии определяется по правилам Клечковского : Порядок следования орбиталей по энергии определяется по правилам Клечковского : 1 правило Клечковского - меньшую энергию имеет та орбиталь, для которой меньше сумма (n+L); 1 правило Клечковского - меньшую энергию имеет та орбиталь, для которой меньше сумма (n+L); 2 правило Клечковского - если у двух орбиталей сумма (n+L) одинакова, то меньшую энергию имеет орбиталь с меньшим значением главного квантового числа) и составляет следующую последовательность 2 правило Клечковского - если у двух орбиталей сумма (n+L) одинакова, то меньшую энергию имеет орбиталь с меньшим значением главного квантового числа) и составляет следующую последовательность 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f и т.д. 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f и т.д. 2) Принцип Паули - два электрона в одном атоме не могут иметь одинаковый набор из четырех квантовых чисел. 2) Принцип Паули - два электрона в одном атоме не могут иметь одинаковый набор из четырех квантовых чисел. 3) Правило Хунда – в пределах одного подуровня электроны распределяются по орбиталям таким образом, чтобы их суммарный спин был максимален. 3) Правило Хунда – в пределах одного подуровня электроны распределяются по орбиталям таким образом, чтобы их суммарный спин был максимален. Электронное строение атома записывается: Электронное строение атома записывается: 1. в электронной формуле указывается количество электронов на подуровнях атома: 1s 2 2s 2 2p 6 3s 2 3p 6 ( Cl) 1. в электронной формуле указывается количество электронов на подуровнях атома: 1s 2 2s 2 2p 6 3s 2 3p 6 ( Cl) 2) на энергетической диаграмме 2) на энергетической диаграмме

Периодический закон (ПЗ) : свойства элементов и их однотипных соединений находятся в периодической зависимости от заряда атомных ядер элементов ПЗ был создан Д. И. Менделеевым на основе разработанной им в 1867 г. период. Системы (таблицы). ПС позволяет определить электронное строение внешних уровней атомов элементов и тем самым сразу выявить особенности, определяющие их химические свойства, т. е. способность отдавать или присоединять электроны. Способность атома отдавать и присоединять электроны также зависит от его радиуса и характеризуется величинами энергии ионизации, энергии сродства к электрону, а в составе молекулы относительной электроотрицательностью атома. Энергия сродства к электрону (Еcр) - это энергия присоединения электрона атомом элемента с образова­ нием аниона: Э + е- Э- (Еср, кДж/моль).

Основные характеристики атомов элементов. Радиус атома. - в пикометр (пм): 1 пм == м. В каждом периоде наибольшим радиусом обладает атом элемента, стоящий в начале периода, в периоде - уменьшаются вследствие увеличения сил взаимодействия электронов с ядром. Относительной электроотрицательностью (ОЭО) атома элемента называют величину, характеризующую относительную способность атома элемента притягивать к себе общие электроны в молекуле. Энергия ионизации (Еи) - это энергия отрыва электрона от атома элемента с образованием катиона: Э - е- Э+ (Еи, кДж/моль). Еи, достигающее максимума для атомов благородных газов, обладающих энергетически выгодной конфигурацией ns 2 np 6.

Химическая связь - это совокупность сил, связывающих атомы или молекулы друг с другом в новые устойчивые структуры.. Энергия связи - энергия, выделяющаяся в процессе образования связи и характеризующая прочность этой связи (Есв, кДж/моль). Химическая связь, осуществляемая за счет одной или нескольких электронных пар, сильно взаимодействующих с ядрами обоих соединяемых атомов, называется ковалентной связью (КС). Для ковалентной связи характерно: 1) взаимодействие между двумя атомами, несильно отличающихся по электроотрицательности; 2) атомы обобществляют свои валентные электроны, путем образования общих электронных пар; 3) одна общая электронная пара между двумя атомами соответствует одной ковалентной связи; 4) при взаимодействии атомов, одинаковых по электроотрицательности, образуется неполярная ковалентная связь; 5) при взаимодействии атомов, различающихся по электроотрицательности, образуется полярная ковалентная связь;

К.с. может образоваться по обменному механизму (каждый из атомов на одну связь предоставляет по одному электрону) или по донорно-акцепторному механизму (донор предоставляет электронную пару, а акцептор - пустую валентную орбиталь). Для к.с. Характерны: : кратность, насыщаемость, направленность, сопряжение, полярность и поляризуемость. Кратность ковалентной связи характеризуется числом общих электронных пар между соединяемыми атомами. Насыщаемость- каждый атом в соединении способен обра­ зовывать определенное число ковалентных связей. Направленность обусловлена тем, что атомные орбитали, участвующие в образо­вании молекулярных орбиталей, имеют различную форму и раз­ную ориентацию в пространстве и стремятся к максимальному перекрыванию. Молекулярная орбиталъ, в которой максимальная электрон­ная плотность сосредоточена на прямой, соединяющей ядра атомов, называется δ-молекулярной орбиталью. Молекулярная орбиталь, возникающая в результате бокового перекрывания р-орбиталей взаимодействующих атомов,, называется π -молекулярной орбиталью. Л. Полинг предложил идею о гибридизации атомных орбиталей. Гибридизацией называется гипотетический процесс смешения различного типа, но близких по энергии атомных орбиталей данного атома с возникновением того же числа новых (гибридных) орбиталей, одинаковых по энергии и форме.

Химическая связь, для которой характерно сильное взаимодействие общей электронной пары с ядром только одного из соединяемых атомов, что приводит к образованию противоположно заряженных ионов, электростатически притягивающихся друг к другу, называется ионной связью. Химическая связь, для которой характерно сильное взаимодействие общей электронной пары с ядром только одного из соединяемых атомов, что приводит к образованию противоположно заряженных ионов, электростатически притягивающихся друг к другу, называется ионной связью. И. с. не обладает насыщаемостью, т.к. один катион может притягивать все соседние анионы. И. с. не обладает насыщаемостью, т.к. один катион может притягивать все соседние анионы. И с. ненаправленна, электрическое поле зарядов имеет сферическую симметрию. И с. ненаправленна, электрическое поле зарядов имеет сферическую симметрию.

Металлическая связь. Металлы имеют особую кристаллическую решетку, в узлах которой находятся как атомы, так и катионы металла, а между ними свободно перемещаются обобществленные электроны ("электронный газ"). Металлический тип взаимодействия является случаем предельной делокализации химической связи. Особые свойства металлической связи (ненаправленность, ненасыщаемость, многоэлектронность и многоцентровость) определяют ряд специфических физических свойств металлов и их сплавов: очень высокие значения тепло- и элекропроводности, большую пластичность, особые оптические свойства и т.д.

Водородная связь может возникать между положительно поляризованным атомом водорода и отрицательно поляризованным атомом очень сильного неметалла (фтор, кислород, азот). То, что подобное взаимодействие не обнаруживается у других атомов, обусловлено уникальными свойствами поляризованного атома водорода (малый размер, отсутствие внутренних электронных слоев). Водородная связь (обозначена точками) может быть: а) межмолекулярной Н О Н О, H F H F Н Н б) внутримолекулярной (между отдельными фрагментами молекулярной структуры). Ряд важных физико-химических свойств молекулярных веществ определяется наличием в них водородных связей (температуры плавления и кипения, вязкость, плотность, растворимость).

Квантово-механическое описание химической связи. Квантово-механическое описание химической связи. Наибольшее распространение получили два способа - метод валентных связей (МВС) и метод молекулярных орбиталей (ММО). Наибольшее распространение получили два способа - метод валентных связей (МВС) и метод молекулярных орбиталей (ММО). Основные положения метода валентных связей (МВС): Основные положения метода валентных связей (МВС): 1) в ходе химического взаимодействия атомы сохраняют свою физическую и химическую индивидуальность; 1) в ходе химического взаимодействия атомы сохраняют свою физическую и химическую индивидуальность; 2) химическая связь рассматривается как возмущение, приводящее к понижению общей энергии взаимодействующих атомов при их сближении; 2) химическая связь рассматривается как возмущение, приводящее к понижению общей энергии взаимодействующих атомов при их сближении; 3) связь возникает при попарном перекрывании атомных орбиталей двух атомов; 3) связь возникает при попарном перекрывании атомных орбиталей двух атомов; 4) связь обеспечивается наличием на перекрывшихся орбиталях пары электронов с антипараллельными спинами 4) связь обеспечивается наличием на перекрывшихся орбиталях пары электронов с антипараллельными спинами 5) атом может образовывать химические связи как в основном, так и в возбужденном валентном состоянии; 5) атом может образовывать химические связи как в основном, так и в возбужденном валентном состоянии; 6) в возбужденное валентное состояние атом может перейти путем промотирования (переброса) валентных электронов с одних орбиталей на другие, если при этом: 6) в возбужденное валентное состояние атом может перейти путем промотирования (переброса) валентных электронов с одних орбиталей на другие, если при этом: а) увеличивается количество неспаренных электронов в атоме, а) увеличивается количество неспаренных электронов в атоме, б) энергия, выделившаяся при образовании дополнительных связей б) энергия, выделившаяся при образовании дополнительных связей компенсирует энергию, затраченную на промотирование; компенсирует энергию, затраченную на промотирование; 7) валентные орбитали при перекрывании могут подвергаться гибридизации, 7) валентные орбитали при перекрывании могут подвергаться гибридизации,

Метод молекулярных орбиталей (ММО) предполагает, что при образовании химической связи: а) атомы полностью утрачивают свою химическую индивидуальность. б) электроны распределены по молекулярным орбиталям. Число МО на диаграмме равно числу исходных АО. МО могут быть 2 типов: 1) связывающие МО (СМО) характеризуются тем, что удаление с них электронов приводит к ослаблению химической связи в частице; 2) разрыхляющие МО (РМО) - удаление с них электронов приводит к увеличению энергии химической связи; Электроны заполняют МО по тем же законам, что и АО в атомах: а) принцип наименьшей энергии, б) принцип Паули, в) правило Хунда. Критерием возможности существования химической частицы является порядок связи (ПС): ПС = (Nсв - Nразр)/n, Если ПС > 0, то данная частица может существовать. Если ПС = 0 или ПС < 0, то такая частица существовать не может

Диаграмма для молекулы Н 2 1s1s1s1s РМО СМО АО(H) МО(H 2 ) Е

По энергии рост : σ2S < σ2S * < σp x

E 2p 3 2s 2 2p 3 σ σ*σ* σ σ*σ* ππ π*π* π*π* O 1s 2 2s 2 2p 4

Активные формы кислорода O 2 обладает парамагнитными свойствами (из-за неспаренных эл-ов) ПС = (Nсв - Nразр)/n=8-4/2=2 1. Синглетный кислород – происходит спаривание 2 е на разрыхляющей МО у одного атома 2. Супероксидный кислород - О 2 +еО 2. Неустойчив, активен,активирует ПОЛ – разрушает клеточные мембраны ПС = (Nсв - Nразр)/n=8-5/2=1,5