ИРИДИЙ Общая характеристика элемента Ири́дий химический элемент с атомным номером 77 в периодической системе, обозначается символом Ir (лат. Iridium).

Презентация:



Advertisements
Похожие презентации
Титан Металл XXI века Металл XXI века. Положение титана в периодической системе химических элементов и строение атома. Титан элемент главной подгруппы.
Advertisements

Алюминий 13 Алюминий (лат. Aluminium) (лат. Aluminium) ,9815 3s 2 3p 1 Порядковый номер. Химический элемент III группы главной подгруппы 3-го.
Алюминий 13 Алюминий (лат. Aluminium) (лат. Aluminium) ,9815 3s 2 3p 1 Порядковый номер. Химический элемент III группы главной подгруппы 3-го.
Титан - Металл XXI века.
Муниципальное образовательное учреждение средняя общеобразовательная школа 37 с углубленным изучением английского языка г. Ярославль Железо Работу выполнила:
Хром элемент побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24.
Общие сведения Водород в природе Строение атома Физические свойства Получение Химические свойства Применение.
Алюминий входит в главную подгруппу III группы. Встречается только в связанном состоянии, это самый распространенный металл в природе. В земной коре его.
Фосфор: Строение Аллотропия Физические свойства Химические свойства Получение Применение Оксид фосфора (III) Оксид фосфора (V) Фосфорные кислоты.
Водород - первый химический элемент периодической системы химических элементов Д. И. Менделеева. Атомный номер водорода 1, относительная атомная масса.
Общая характеристика VI-а подгруппы Сера Сероводород и сульфиды Оксиды серы Оксид серы (IV) Оксид серы (VI) Сернистая кислота Серная кислота.
Алюминий. Соединения алюминия МБОУ СОШ 99 г.о. Самара Предмет: Химия Класс: 9 Учебник: Минченков Е.Е. и др., 2006г. Учитель: Лузан У.В. Год создания:
НАТРИЙ ЩЕЛОЧНОЙ МЕТАЛЛ. История открытия Na Первое знакомство человека с металлами произошло несколько десятков тысяч лет назад. В 1807 г. Г.Дэви приступает.
Химический элемент с атомным номером 34 в периодической системе, обозначается символом Se.
Железо Желе́зо элемент побо- чной подгруппы восьмой группы IV периода пери- одической системы с атомным номером 26. Один из самых распро- странённых в.
Железо расположено в 4 периоде, в побочной подгруппе VIII группы Периодической системы химических элементов Д. И. Менделеева. Относительная атомная масса.
Алюминий Характеристика 1. Впервые получен в 1825 году Гансом Эрстедом. 2. В Периодической системе расположен в 3 периоде, III А - группе. 3. В природе.
Сера и ее свойства Химические свойства. Атом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень.
Натрий Металлы группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло - и электропроводность,
Презентация к уроку по химии (9 класс) по теме: Оксиды азота
Транксрипт:

ИРИДИЙ

Общая характеристика элемента Ири́дий химический элемент с атомным номером 77 в периодической системе, обозначается символом Ir (лат. Iridium). Иридий очень твёрдый, тугоплавкий, серебристо-белый переходный металл платиновой группы, обладающий высокой плотностью и сравнимый по этому параметру только с осмием (плотности Os и Ir практически равны с учётом расчетной погрешности). Имеет высокую коррозионную стойкость даже при температуре 2000 °C. Иридий был открыт в 1803 году английским химиком С. Теннантом одновременно с осмием, которые в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Название (др.-греч. ρις радуга) получил благодаря разнообразной окраске своих солей. В соединениях проявляет степени окисления +3, +4, реже другие от +1 до +6. Ири́дий химический элемент с атомным номером 77 в периодической системе, обозначается символом Ir (лат. Iridium). Иридий очень твёрдый, тугоплавкий, серебристо-белый переходный металл платиновой группы, обладающий высокой плотностью и сравнимый по этому параметру только с осмием (плотности Os и Ir практически равны с учётом расчетной погрешности). Имеет высокую коррозионную стойкость даже при температуре 2000 °C. Иридий был открыт в 1803 году английским химиком С. Теннантом одновременно с осмием, которые в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Название (др.-греч. ρις радуга) получил благодаря разнообразной окраске своих солей. В соединениях проявляет степени окисления +3, +4, реже другие от +1 до +6.

Как себя чувствует атом? Электрон в атоме может переходить из данного состояния в состояния, характеризуемые меньшими значениями энергии, при этом, как правило, испускается квант электромагнитного излучения. Или, наоборот, в состояния, характеризуемые более высокими значениями энергии, тогда переход осуществляется, как правило, после того, как атом подвергся какому-либо внешнему воздействию, например, он поглотил квант электромагнитного излучения или провзаимодействовал с другой какой-либо частицей. Если энергия одного из электронов в атоме больше некоторого нормального значения, принимаемого за энергию основного состояния, то такой атом называется возбужденным или, иначе, находящимся в возбужденном состоянии. Обычно возбужденное состояние атома не может существовать долго. Либо самостоятельно, либо опять-таки под воздействием какой- либо внешней причины такой атом переходит из возбужденного состояния в основное, излучая при этом один или несколько квантов. Электрон в атоме может переходить из данного состояния в состояния, характеризуемые меньшими значениями энергии, при этом, как правило, испускается квант электромагнитного излучения. Или, наоборот, в состояния, характеризуемые более высокими значениями энергии, тогда переход осуществляется, как правило, после того, как атом подвергся какому-либо внешнему воздействию, например, он поглотил квант электромагнитного излучения или провзаимодействовал с другой какой-либо частицей. Если энергия одного из электронов в атоме больше некоторого нормального значения, принимаемого за энергию основного состояния, то такой атом называется возбужденным или, иначе, находящимся в возбужденном состоянии. Обычно возбужденное состояние атома не может существовать долго. Либо самостоятельно, либо опять-таки под воздействием какой- либо внешней причины такой атом переходит из возбужденного состояния в основное, излучая при этом один или несколько квантов.

Основное и возбужденное состояние атома 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d7 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d7 Валентный слой - 5d7 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d7 6s2 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d7 6s2 Валентный слой - 6s2

Соединения двухвалентного иридия IrCl2 блестящие тёмно-зелёные кристаллы. Плохо растворяется в кислотах и щёлочах. При нагревании до 773 °C разлагается на IrCl и хлор, а выше 798 °C на составные элементы. Получают нагреванием металлического иридия или IrCl3 в токе хлора при 763 °C. Ir+Cl2 IrCl2 IrS блестящее тёмно-синее твёрдое вещество. Мало растворим в воде и кислотах. Растворяется в сульфиде калия. Получают нагреванием металлического иридия в парах серы. Ir+S IrS

Соединения трехвалентного иридия Ir2O3 твёрдое тёмно-синее вещество. Малорастворим в воде и этаноле. Растворяется в серной кислоте. Получают при лёгком прокаливании сульфида иридия (III). Ir2(SO4)3+6NaOH Ir2O3+3Na2SO4+3H2O 2IrCl3+6NaOH Ir2O3+6NaCl+3H2O IrCl3 летучее соединение оливково-зелёного цвета. Плотность 5,30 г/см³. Малорастворим в воде, щелочах и кислотах. При 765 °C разлагается на IrCl2 и хлор, при 773 °C на IrCl и хлор, а выше 798 °C на составные элементы. Получают действием хлора на нагретый до 600 °C иридий. 2Ir+3Cl2 2IrCl3 IrBr3 оливково-зелёные кристаллы. Растворяется в воде, мало растворим в спирте. Дегидратируется при нагревании до °C. При сильном нагревании разлагается на элементы. Получают взаимодействием IrO2 с бромоводородной кислотой. 2IrO2*2H2O+8HBr3 2IrBr3*4H2O+Br2 Ir2S3 твёрдое коричневое вещество. Разлагается на элементы при нагревании выше 1050 °C. Мало растворим в воде. Растворяется в азотной кислоте и растворе сульфида калия. Получают действием сероводорода на хлорид иридия (III) или нагреванием порошкообразного металлического иридия с серой при температуре не выше 1050 °C в вакууме. Ir+2 Ir2S3

Соединения четырехвалентного иридия IrO2 чёрные тетрагональные кристаллы с решёткой типа рутила. Плотность 3,15 г/см³. Малорастворим в воде, этаноле и кислотах. Восстанавливается до металла водородом. Термически диссоциирует на элементы при нагревании. Получают нагреванием порошкообразного иридия на воздухе или в кислороде при 700 °C, нагреванием IrO2*nН2О. Ir+O2 IrO2 IrF4 жёлтая маслянистая жидкость, разлагающаяся на воздухе и гидролизующаяся водой. tпл 106 °C. Получают нагреванием IrF6 с порошком иридия при 150 °C. 2IrF6+Ir 3IrF4 IrCl4 гигроскопичное коричневое твёрдое вещество. Растворяется в холодной воде и разлагается тёплой (водой). Получают нагреванием ( °C) металлического иридия с хлором при повышенном давлении. 2IrCl3+Cl2 2IrCl4 IrBr4 расплывающееся на воздухе синее вещество. Растворяется в этаноле; в воде (с разложением), диссоциирует при нагревании на элементы. Получают взаимодействием IrO2 с бромоводородной кислотой при низкой температуре. IrO2+4HBr IrBr4+2H20 IrS2 твёрдое коричневое вещество. Малорастворим в воде. Получают пропусканием сероводорода через растворы солей иридия (IV) или нагреванием порошкообразного металлического иридия с серой без доступа воздуха в вакууме. Ir+2S IrS2 Ir(OH)4 (IrO2·2H2O) образуется при нейтрализации растворов хлороиридатов(IV) в присутствии окислителей. Осадок Ir2O3·nН2О выпадает при нейтрализации щёлочью хлороиридатов (III) и легко окисляется на воздухе до IrO2. Практически нерастворим в воде.

Соединения шестивалентного иридия IrF6 жёлтые тетрагональные кристаллы. tпл 44 °C, tкип 53 °C, плотность 6,0 г/см³. Под действием металлического иридия превращается в IrF4, восстанавливается водородом до металлического иридия. Получают нагреванием иридия в атмосфере фтора в трубке из флюорита. Сильный окислитель, реагирует с водой и монооксидом азота. Ir+3F2 IrF6 IrS3 серый, малорастворимый в воде порошок.Получают нагреванием порошкообразного металлического иридия с избытком серы в вакууме. Строго говоря, не является соединением шестивалетного иридия, так как содержит связь S- S. IrCl4+7S IrS3+2S2Cl2

Распространение в природе и месторождения Содержание иридия в земной коре ничтожно мало (107 масс. %). Он встречается гораздо реже золота и платины. Встречается вместе с родием, рением и рутением. Относится к наименее распространённым элементам. Иридий относительно часто встречается в метеоритах. Не исключено, что реальное содержание металла на планете гораздо выше: его высокая плотность и высокое родство к железу могли привести к смещению иридия вглубь Земли, в ядро планеты, в процессе её формирования из расплава. Содержание иридия в земной коре ничтожно мало (107 масс. %). Он встречается гораздо реже золота и платины. Встречается вместе с родием, рением и рутением. Относится к наименее распространённым элементам. Иридий относительно часто встречается в метеоритах. Не исключено, что реальное содержание металла на планете гораздо выше: его высокая плотность и высокое родство к железу могли привести к смещению иридия вглубь Земли, в ядро планеты, в процессе её формирования из расплава. Иридий содержится в таких минералах, как невьянскит, сысертскит и ауросмирид. Иридий содержится в таких минералах, как невьянскит, сысертскит и ауросмирид. Коренные месторождения осмистого иридия расположены в основном в перидотитовых серпентинитах складчатых областей (в ЮАР, Канаде, США, на Новой Гвинее). Коренные месторождения осмистого иридия расположены в основном в перидотитовых серпентинитах складчатых областей (в ЮАР, Канаде, США, на Новой Гвинее).

Основные химические свойства Иридий устойчив на воздухе при обычной температуре и нагревании, при прокаливании порошка в токе кислорода при °C образует в незначительном количестве IrO2. Выше 1200 °C частично испаряется в виде IrO3. Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями. Свежеосажденная иридиевая чернь частично растворяется в царской водке с образованием смеси соединений Ir(III) и Ir(IV). Порошок иридия может быть растворён хлорированием в присутствии хлоридов щелочных металлов при °C или спеканием с Na2O2 или BaO2 с последующим растворением в кислотах. Иридий взаимодействует с F2 при °C, а c Cl2 и S при температуре красного каления. Иридий устойчив на воздухе при обычной температуре и нагревании, при прокаливании порошка в токе кислорода при °C образует в незначительном количестве IrO2. Выше 1200 °C частично испаряется в виде IrO3. Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями. Свежеосажденная иридиевая чернь частично растворяется в царской водке с образованием смеси соединений Ir(III) и Ir(IV). Порошок иридия может быть растворён хлорированием в присутствии хлоридов щелочных металлов при °C или спеканием с Na2O2 или BaO2 с последующим растворением в кислотах. Иридий взаимодействует с F2 при °C, а c Cl2 и S при температуре красного каления. 2IrF6+10H2O 2Ir(OH)4+12HF+O2 2IrF6+10H2O 2Ir(OH)4+12HF+O2 IrF6+NO NO[IrF6] IrF6+NO NO[IrF6]

Основные физические свойства Иридий представляет серебристо-белый очень твердый и довольно ломкий металл, в котором различимы отдельные кристаллы. При температуре красного каления он малоковкий, однако поддается обработке напильником и полировке. Плотность 22,65 г/см3, Тпл.= 2447°С. Кристаллическая структура кубическая гранецентрированная с периодом а0=0,38387 нм; электрическое сопротивление 5,3·108Ом·м (при 0 °C); коэффициент линейного расширения 6,5·106 град; модуль нормальной упругости 52,029·106 кг/мм². Иридий представляет серебристо-белый очень твердый и довольно ломкий металл, в котором различимы отдельные кристаллы. При температуре красного каления он малоковкий, однако поддается обработке напильником и полировке. Плотность 22,65 г/см3, Тпл.= 2447°С. Кристаллическая структура кубическая гранецентрированная с периодом а0=0,38387 нм; электрическое сопротивление 5,3·108Ом·м (при 0 °C); коэффициент линейного расширения 6,5·106 град; модуль нормальной упругости 52,029·106 кг/мм². Стабильными являются изотопы 191Ir и 193Ir. Период полураспада 192Ir 74 дня. Стабильными являются изотопы 191Ir и 193Ir. Период полураспада 192Ir 74 дня.

Биологическое значение и экологическая безопасность Не играет никакой биологической роли. Металлический иридий нетоксичен, но некоторые соединения иридия, например, его гексафторид (IrF6), очень ядовиты. Не играет никакой биологической роли. Металлический иридий нетоксичен, но некоторые соединения иридия, например, его гексафторид (IrF6), очень ядовиты. Ir+3F2 IrF6 Ir+3F2 IrF6

Применение Особый интерес в качестве источника электроэнергии вызывает его ядерный изомер иридий-192m2 (имеющий период полураспада 241 год). Сплавы с W и Th материалы термоэлектрических генераторов, с Hf материалы для топливных баков в космических аппаратах, с Rh, Re, W материалы для термопар, эксплуатируемых выше 2000 °C, с La и Се материалы термоэмиссионных катодов. Иридий используется также для изготовления перьев для ручек. Небольшой шарик из иридия можно встретить на кончиках перьев и чернильных стержней, особенно хорошо его видно на золотых перьях, где он отличается по цвету от самого пера. Иридий в палеонтологии и геологии является индикатором слоя, который сформировался сразу после падения метеоритов. Иридий, наряду с медью и платиной, применяется в свечах зажигания двигателей внутреннего сгорания (ДВС) в качестве материала для изготовления электродов, делая такие свечи наиболее долговечными ( тыс. км пробега автомобиля) и снижая требования к напряжению искрообразования. Изначально использовался в авиации и гоночных автомобилях, затем, по мере снижения стоимости продукции, стал употребляться и на массовых автомобилях. В настоящее время такие свечи доступны для большинства двигателей, однако являясь наиболее дорогими. Иридий-192 является радионуклидом с периодом полураспада 74 сут, широко применяемым в дефектоскопии, особенно в условиях, когда генерирующие источники не могут быть использованы (взрывоопасные среды, отсутствие питающего напряжения нужной мощности).