Презентация по математике На тему: Правила Крамера.

Презентация:



Advertisements
Похожие презентации
§ 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы A называется ее базисным минором, если он отличен от нуля, а все миноры матрицы A более высокого порядка.
Advertisements

Линейная алгебра Определители второго порядка Системы из двух линейных уравнений с двумя неизвестными Определители n – ого порядка Методы вычисления определителей.
Презентация "Методы решения системы линейных уравнений"
1 3. Системы линейных уравнений. Леопо́льд Кро́некер.
Системы линейных уравнений Лекция 3. Пусть задана система n линейных уравнений с n неизвестными.
Линейная алгебра Матрицы. Основные понятия. Действия над матрицами Метод обратной матрицы решения систем линейных уравнений.
2. Системы линейных уравнений Элементы линейной алгебры.
§2 РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 2.1 Системы линейных уравнений Линейной системой m уравнений с n неизвестными х 1, х 2,…х n называется.
Системы линейных алгебраических уравнений (СЛАУ).
Тема 1 «Элементы линейной и векторной алгебры» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Понятия.
1 Дисциплина ЛААГ Консультация (линейная алгебра и векторная алгебра) Кафедра высшей математики ТПУ Лектор: доцент Тарбокова Татьяна Васильевна.
Линейная алгебра Определители второго порядка Системы из двух линейных уравнений с двумя неизвестными Определители n – ого порядка Методы вычисления определителей.
Преподаватель: Филипенко Николай Максимович доцент кафедры Высшей математики и математической физики ТПУ.
{ cтруктура обратной матрицы – алгоритм получения обратной матрицы – запись линейных систем уравнений в матричной форме – крамеровская система линейных.
Системы линейных уравнений.. Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты системы, i=1,…,m;
1. Матрицы Элементы линейной алгебры. Матрицы Матрицей размера m n называется прямоугольная таблица чисел, состоящая из m строк и n столбцов. Числа a.
Системы уравнений Основные методы решения. Системы уравнений f(x;y)=0 g(x;y)=0 Система уравнений.
Матрицы Элементарные преобразования и действия над матрицами made by aspirin.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 2. Тема: Обратная матрица Цель: Рассмотреть понятие.
Метод Гаусса и Крамера. Иога́нн Карл Фри́дрих Га́усс ( ) Немецкий математик, механик, физик и астроном. Считается одним из величайших математиков.
Транксрипт:

Презентация по математике На тему: Правила Крамера

В литературе известны разные способы решения Крамеровой системы линейных алгебраических уравнений. Один из них – матричный способ – состоит в следующем. Пусть дана Крамерова система, т.е. квадратная система линейных уравнений с неизвестными Определитель которой отличен от нуля: (1) (2)

Систему (1) можно представить в виде одного матричного уравнения (3) где A - матрица коэффициентов при неизвестных системы (1), - столбец (Матрица-столбец) неизвестных - столбец свободных членов системы (1)

Так как, то матрица A невырожденная и для нее существует обратная матрица. Умножив равенство (3) на (слева), получим (единственное) решение системы в следующей матричной форме (в предположении, что она совместима и - ее решение) Где обратная матрица имеет вид :

Другой известный способ можно назвать методом алгебраических дополнений. Его использование предполагает владение понятием алгебраического дополнения как и в матричном способе, теоремой о разложении определителя по столбцу (строке), теоремами о замещении и об аннулировании. Предлагаемый нами новый метод опирается на теорему Коши-Бине об определителе произведения матриц. Суть этого метода можно понять легко, если сначала рассмотрим случай. Очевидно, что при выполняются следующие матричные равенства (если задана система (1)):

Переходя к определителям в этих равенствах и обозначив определители правых частей соответственно через получим формулы Крамера: () (Правило Крамера) Переход к общему случаю Крамеровых систем (1) порядка ничего по существу не меняет. Просто следует заметить, что матрица с определителем получается из единичной матрицы заменой -го столбца столбцом неизвестных:

Теперь из равенств Где - матрица, получающаяся заменой - го столбца матрицы столбцом свободных членов системы (1), причем к формулам Крамера, взяв определители от обеих частей в каждом равенстве: откуда ввиду имеем

Другой, еще более короткий способ отыскания решения системы (1) состоит в следующем (по-прежнему ): пусть система (1) совместна и числа (после переобозначений) образуют ее решение. Тогда при имеем, используя два линейных свойства определителя: Можно начать и с определителя, в котором вместо свободных членов в -м столбце подставлены их выражения согласно (1); используя соответствующие свойства определителя, получим: откуда и получаются формулы Крамера.