Вычисление значений аналитической функции. Действительная функция f(x) называется аналитической в точке если в некоторой окрестности этой точки функция.

Презентация:



Advertisements
Похожие презентации
Вычисление значений многочлена. Схема Горнера. При аппроксимации функций, а также в некоторых других задачах приходится вычислять значения многочленов.
Advertisements

Степенные ряды Лекции12, 13, 14. Функциональные ряды Ряд, члены которого являются функциями, называется функциональным и обозначается. Если при ряд сходится,
Тема: Вычисление значений функций 1.Вычисление значения алгебраического полинома. Схема Горнера. Рассмотрим полином Наша задача – найти значение этого.
Определение 1. Выражение называется числовым рядом. Числа называются первым, вторым,...,... членами ряда. называется общим членом ряда. Определение 2.
Тема Реферата : Применение формулы Тейлора. Выполнила : Еремина Е., гр.2 г 21 Руководитель : Тарбокова Т. В.
Бер Л.М. Числовые и функциональные ряды ГОУ ВПО НИ ТПУ Рег. 190 от Степенные ряды Определение. Функциональный ряд вида.
{функциональные ряды – степенные ряды – область сходимости – порядок нахождения интервала сходимости - пример – радиус интервала сходимости – примеры }
ТЕОРИЯ РЯДОВ. 3. СТЕПЕННЫЕ РЯДЫ 3.5. Ряды Тейлора и Маклорена. Формула Тейлора: остаточный член в форме Лагранжа. где.
§ 16. Формула Тейлора и Маклорена Опр. 11. Многочленом (полиномом) n - го порядка называется функция P n ( x ) = a 0 + a 1 x + a 2 x 2 + … + a n x n где.
Функциональные и степенные ряды Функциональные ряды Степенные ряды Сходимость степенных рядов Свойства степенных рядов 1/18.
§5. Производная неявно заданной функции. Чтобы найти производную надо продифференцировать обе части равенствa F(x,y)=0, учитывая, что y=y(x) есть функция.
ТЕОРИЯ РЯДОВ. 3. СТЕПЕННЫЕ РЯДЫ 3.1. Функциональные ряды. Ряд, членами которого являются функции от х, называется функциональным.
Метод тригонометрических подстановок Презентацию выполнил: Ведин Артём.
Числовые ряды Достаточные признаки сходимости рядов с положительными членами (продолжение) Знакопеременные ряды Знакочередующиеся ряды Свойства абсолютно.
Возрастание и убывание функций. Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной на.
Возрастание и убывание функций PREZENTED.RU. Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной.
Логарифмические уравнения с параметрами
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 8. Тема: Ряды Тейлора (Маклорена). Цель: Рассмотреть.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Числовые и функциональные ряды Тема: Свойства степенных рядов. Разложение функции в степенной.
Функциональные ряды. Функциональные ряды.. Опр-е: Выражение f 1 (x)+f 2 (x)+…+f n (x)+… (1) называется рядом относительно переменной x. Придавая переменой.
Транксрипт:

Вычисление значений аналитической функции

Действительная функция f(x) называется аналитической в точке если в некоторой окрестности этой точки функция разлагается в степенной ряд (ряд Тейлора): При получаем ряд Маклорена

Разность называется остаточным членом ряда

Вычисление значений показательной функции Для показательной функции справедливо разложение Остаточный член ряда имеет вид

Приближенное вычисление для малых x удобно вести, пользуясь следующей рекуррентной записью: (k = 1, 2, …, n), где Число приближенно дает искомый результат.

Для остатка ряда может быть получена следующая оценка: при Поэтому процесс суммирования может быть прекращен, как только очередной вычисленный член ряда будет по модулю меньше заданной допустимой погрешности:, если только Для больших по модулю значений x этот ряд мало пригоден для вычислений

Пример:

Вычисление значений синуса и косинуса. Для вычисления значений функций и пользуемся степенными разложениями

Эти ряды при больших x сходятся медленно, но, учитывая периодичность функции и и формулы приведения тригонометрических функций, легко заключить, что достаточно уметь вычислять и для промежутка

При этом можно использовать следующие рекуррентные формулы:

Так как в промежутке ряд знакочередующийся с монотонно убывающими по модулю членами, то для его остатка справедлива оценка

Аналогично для ряда Следовательно, процесс вычисления и можно прекратить, как только очередной полученный член ряда по модулю будет меньше допустимой погрешности

Вычисление значений логарифмической функции Пользуемся разложением по степеням Пусть x – положительное число. Представим его в виде где m – целое число и

Тогда, полагая, получим где

Обозначив получаем рекуррентную запись, Процесс суммирования прекращается, как только выполнится неравенство где – допустимая погрешность.