Леонард Эйлер родился в 1707 году в семье базельского пастора, друга семьи Бернулли. Рано обнаружил математические способности. Начальное обучение получил.

Презентация:



Advertisements
Похожие презентации
Презентация о выдающемся математике Леонарде Эйлере.
Advertisements

Куманикиной Анны. Леонард Эйлер швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики,
Леонард Эйлер ( нем. Leonhard Euler; 4 (15) апреля 1707, Базель, Швейцария 7 (18) сентября 1783, Санкт - Петербург, Российская империя ) российский, немецкий.
СОСТАВЛЕНО ПЕЧЕНИЦЫНЫМ. А ПАЛИХОВЫМ.А. 6b КШИ ДАННЫЕ: Дата рождения: 4 апреля 1707( ) 4 апреля1707 Место рождения: Базель, Швейцария БазельШвейцария.
Леонард Эйлер родился в 1707 году в семье базельского пастора Пауля Эйлера. Мальчик увлечённо занимался математикой под руководством Якоба Бернулли. Якоб.
ГЕНИЙ XVIII ВЕКА ЛЕОНАРД ЭЙЛЕР « Природа формирует свои законы языком математики » Галилео Галилей ( )
Родился 21 августа 1789г. Париж. Франция Французский математик, член Парижской академии наук 1816г. Петербургской академии 1831г.
Леонард Эйлер Он считается самым великим математиком в истории человечества. Эйлер оставил важнейшие труды по самым различным отраслям математики, механики,
БИОГРАФИЯ «КАРЛА ГАУССА» Выполнила: Мокроусова Каролина гр 2 г 21.
Леонард Эйлер. Работу выполнила ученица 11 класса МОУ « Тугустемирская СОШ » Кудряшова Наташа Учитель : Хайбрахманова Г. Ф.
Гаусс родился 30 апреля 1777 в городе Брауншвейг и умер 23 февраля1855 в городе Гёттинген. Гаусс считается одним из величайших математиков всех времен.
Выполнила ученица 4 «г» класса МОУ СОШ 39 г.Твери Константинова Екатерина.
Леонард Эйлер Идеальный математик XVII века. Математик, физик, механик и астроном Эйлер – ученый необычайной широты интересов и творческой продуктивности.
Иоганн I Бернулли. швейцарский математик, самый знаменитый представитель семейства Бернулли, младший брат Якоба Бернулли, отец Даниила Бернулли.
Выполнила ученица 4 «г» класса МОУ СОШ 39 г.Твери Константинова Екатерина.
Из истории дифференциального и интегрального исчисления.
Лейбниц Готфрид Великий математик. Выполнил: Степанов Антон. Корсунь Миша.
Леонард Эйлер ( ). Содержание. 1.Где и когда родился Эйлер? 2.Где учился Леонард. 3.Жизнь учёного в Берлине. 4.Последние годы жизни учёного. 5.Вклад.
КАРЛ ФРИДРИХ ГАУСС ( ) Чикей Эртине, 1Е21.
Многогранником называется тело, ограниченное плоскими многоугольниками. грани рёбра вершины.
Транксрипт:

Леонард Эйлер родился в 1707 году в семье базельского пастора, друга семьи Бернулли. Рано обнаружил математические способности. Начальное обучение получил дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой как в качестве развлечения, так и для развития логического мышления. Одновременно с обучением в гимназии мальчик увлечённо занимался математикой под руководством Якоба Бернулли, а в последние гимназические годы посещал университетские лекции младшего брата Якоба, Иоганна Бернулли.

20 октября 1720 года 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета. Но любовь к математике направила Леонарда по иному пути. Вскоре способный мальчик обратил на себя внимание профессора Иоганна Бернулли. Он передал одарённому студенту математические статьи для изучения, а по субботам пригласил приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли Даниилом и Николаем, также увлечённо занимавшимися математикой. 8 июня 1724 года 17-летний Леонард Эйлер произнёс на латыни речь о сравнении философских воззрений Декарта и Ньютона и был удостоен учёной степени магистра.

В последующие два года юный Эйлер написал несколько научных работ. Одна из них, «Диссертация по физике о звуке», получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики (1725). Но, несмотря на положительный отзыв, 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Надо отметить, что число научных вакансий в Швейцарии было совсем невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где как раз шла организация Академии наук; они обещали похлопотать там и о должности для Эйлера. В начале зимы 1726 года Эйлеру сообщили из Санкт-Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии с окладом 200 рублей. Получение аванса для компенсации проездных расходов растянулось почти на год, и лишь 5 апреля 1727 года Эйлер навсегда покинул Швейцарию. Швейцарская банкнота с изображением молодого Эйлера

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век это век Эйлера. Если до него достижения в области математики были разрознены и не всегда согласованы, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».

Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте «формула Эйлера», операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e, обозначение i для мнимой единицы, гамма- функция с её окружением и многое другое. По существу именно он создал несколько новых математических дисциплин теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Другие области его трудов: диофантов анализ, астрономия, оптика, акустика, статистика и т. д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков. Биографы отмечают, что Эйлер был виртуозным алгоритмистом. Он неизменно старался довести свои открытия до уровня конкретных вычислительных методов.

Эйлер охотно участвовал в научных дискуссиях, из которых наибольшую известность получили: Спор о струне. Спор с Д'Аламбером о свойствах комплексного логарифма. Спор с английским оптиком Джоном Доллондом о том, возможно ли создать ахроматическую линзу. Во всех упомянутых случаях Эйлер отстаивал правильную позицию. Формула Эйлера

Эйлер продолжил исследования Ферма, ранее высказавшего (под влиянием Диофанта) ряд разрозненных гипотез о натуральных числах. Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил их в содержательную теорию чисел. Он ввёл в математику исключительно важную «функцию Эйлера» и сформулировал с её помощью «теорему Эйлера». Эйлер создал теорию сравнений и квадратичных вычетов, указав для последних критерий Эйлера. Доказал утверждение Ферма о представлении нечётного простого числа в виде суммы двух квадратов. Дал одно из решений задачи о четырех кубах. Эйлер доказал Великую теорему Ферма для n = 3 и n = 4, создал полную теорию непрерывных дробей, исследовал различные классы диофантовых уравнений, теорию разбиений чисел на слагаемые. Он открыл, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел. В основе её лежат тождество Эйлера и общий метод производящих функций. Эйлер ввёл понятие первообразного корня и выдвинул гипотезу, что для любого простого числа p существует первообразный корень по модулю p; доказать это он не сумел, позднее теорему доказали Лежандр и Гаусс. Большое значение в теории имела другая гипотеза Эйлера квадратичный закон взаимности, также доказанный Гауссом.

Одна из главных заслуг Эйлера перед наукой монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в годах три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер дал настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера Маскерони. Он делит с Лагранжем честь открытия вариационного исчисления, выписав уравнения Эйлера Лагранжа для общей вариационной задачи. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению («Метод нахождения кривых, обладающих свойствами максимума либо минимума»).

Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе не поддававшийся до него никому ряд обратных квадратов: Первая книга по вариационному исчислению Первая книга по вариационному исчислению

В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом: Три высоты треугольника пересекаются в одной точке (ортоцентре). В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой «прямой Эйлера». Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера). Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2. Второй том «Введения в анализ бесконечно малых» (1748) это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований. В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений. Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конем. При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

Множество работ Эйлера посвящены математической физике: механике, гидродинамике, акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной. В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для разных частных случаев.

Эйлер много работал в области небесной механики. Он заложил основу теории возмущений, позднее завершённой Лапласом, и разработал очень точную теорию движения Луны. Эта теория оказалась пригодной для решения насущной задачи определения долготы на море, и английское Адмиралтейство выплатило за неё Эйлеру специальную премию. Основные труды Эйлера в этой области: «Теория движения Луны», «Теория движения планет и комет» (лат. Theoria motus planetarum et cometarum), «Новая теория движения Луны», Эйлер исследовал поле тяготения не только сферических, но и эллипсоидальных тел, что представляло собой существенный шаг вперёд.

В 1757 году Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения. Почти сто лет спустя, когда во многих странах и прежде всего в Англии стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.

Работу выполнила Есеналина Альфия, ученица 8 «А» класса СШ22 г. Костаная.