Теорема Менелая и теорема Чевы в школьном курсе математики Теорема Менелая и теорема Чевы в школьном курсе математики «Все незначительное нужно, Чтобы.

Презентация:



Advertisements
Похожие презентации
Тема: Решение треугольника теорема косинусов. 3 где R – радиус описанной окружности.,где P – периметр, r – радиус вписанной окружности. Площадь.
Advertisements

Геометрия. Выполнил ученик 10 класса «Б» Средней школы 1143 Клоков Антон.
Теорема Менелая Пусть на сторонах AB, BC и продолжении стороны AC треугольника ABC взяты соответственно точки C 1, A 1 и B 1. Точки A 1, B 1, C 1 лежат.
§ 6. Отношение отрезков. 6 из диагностической работы. Точки М и N середины сторон соответственно ВС и CD параллелограмма ABCD. Отрезки AM и BN пересекаются.
ПОДОБИЕ В ГЕОМЕТРИИ ПОДОБНЫЕ ТРЕУГОЛЬНИКИ Афанасьева С.А. МОУ «СОШ 64» 2015 г.
Геометрия 9 класс Многоугольники. Содержание Правильные многоугольники Параллелограмм Прямоугольник Ромб Трапеция Теоремы о площади четырехугольника.
Свойства биссектрисы треугольника.
Второй признак подобия треугольников Теорема. (Второй признак подобия.) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника.
§4. Трапеция.. Задача 4 из диагностической работы Найдите площадь трапеции с основаниями 18 и 13 и боковыми сторонами 3 и Дополнительное построение.
Задание 7 ( ) Площадь треугольника ABC равна 194, DE средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.
Периметр квадрата равен 12 см. Вычислить длину окружности, описанной около четырехугольника, вершинами которого служат середины сторон данного квадрата.
Издательство «Легион» Задания ГИА по геометрии в рамках новой модели.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Всероссийский конкурс исследовательских работ учащихся Первые шаги в науку Направление: математика Тема: «Решения олимпиадных задач через отношения» Тихонов.
Подобие треугольников. Задача_1: В прямоугольном треугольнике ABC проведена высота CK к гипотенузе. Назовите пары подобных треугольников. Докажите подобие.
Выполнил: ученик 10 «Б» класса МБОУ лицей 3 г. Воронежа Козловский Никита. Руководитель: Орлова О.В. учитель высшей категории, учитель математики МОУ СОШ.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Задача 1. Прямая касается окружностей радиусов R и r в точках A и B. Известно, что расстояние между центрами окружностей равно a, причем r < R и r + R.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
Транксрипт:

Теорема Менелая и теорема Чевы в школьном курсе математики Теорема Менелая и теорема Чевы в школьном курсе математики «Все незначительное нужно, Чтобы значительному быть…» Чтобы значительному быть…» И. Северянин И. Северянин Работа учителя математики Колиной Н.К., МБОУ сош 17,г.Заволжье Нижегородской области Работа учителя математики Колиной Н.К., МБОУ сош 17,г.Заволжье Нижегородской области

Содержание Теоретические основы Теорема Чевы Теорема Менелая Методические рекомендации Методика обучения решению задач в период предпрофильной подготовки Методика обучения решению задач в период предпрофильной подготовки Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Применение теорем Менелая и Чевы в решении стереометрических задач Применение теорем Менелая и Чевы в решении стереометрических задач

Теорема Чевы Пусть в ABC на сторонах BC,AC,AB или их продолжениях взяты соответственно точки A 1, B 1 и C 1,не совпадающие с вершинами треугольника. Прямые A A 1, BB 1 и CC 1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство

Теорема Менелая Пусть на сторонах AB, BC и на продолжении стороны AC (либо на продолжениях сторон AB,BC и AC) ABC взяты соответственно точки C 1,A 1 и B 1, не совпадающие с вершинами ABC. Точки A 1, B 1, C 1 лежат на одной прямой тогда и только тогда, когда выполняется равенство

Методика обучения решению задач в период предпрофильной подготовки 1. Теорема Менелая и пропорциональные отрезки в треугольнике. 1. Теорема Менелая и пропорциональные отрезки в треугольнике. 2. Теорема Чевы и ее следствия. Применение теорем Чевы и Менелая к задачам на доказательство. 2. Теорема Чевы и ее следствия. Применение теорем Чевы и Менелая к задачам на доказательство. 3. Решение задач на пропорциональное деление отрезков в треугольнике. 3. Решение задач на пропорциональное деление отрезков в треугольнике. 4. Решение задач, связанных с нахождением площадей. 4. Решение задач, связанных с нахождением площадей. 5. Комбинированные задачи.

Теорема Менелая и пропорциональные отрезки в треугольнике Задача 1. В треугольнике ABC точка D делит сторону BC в отношении BD:DC= 1: 3, а точка O делит AD в отношении AO:OD=5:2. В каком отношении прямая BO делит отрезок AC? Задача 2. В ABC на стороне AC взята точка M, а на стороне BC – точка K так, что AM: MC= 2:3, BK: KC= 4:3. В каком отношении AK делит отрезок BM? Задача 3. В ABC AA 1 - биссектриса, BB 1 - медиана; AB=2, AC=3; Найти BO: OB 1

Теорема Чевы и ее следствия. Следствие 1. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Следствие 2. Биссектрисы треугольника пересекаются в одной точке. Следствие 3. Высоты треугольника (или их продолжения) пересекаются в одной точке.

Теорема Чевы и ее следствия. Следствие 4. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Следствие 5. Прямые, соединяющие вершины треугольника с точками, в которых вписанная окружность касается противоположных сторон, пересекаются в одной точке.

Применение теорем Чевы и Менелая к задачам на доказательство Задача 1. Используя теорему Чевы, доказать, что в произвольном треугольнике прямые, проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке. Задача 2. На стороне AC треугольника ABC взяты точки P и E, на стороне BC – точки M и K, причем AP: PE: EC= CK: KM: MB. Отрезки AM и BP пересекаются в точке O, отрезки AK и BE – в точке T. Докажите, что точки O, T и С лежат на одной прямой.

Задачи на пропорциональное деление отрезков в треугольнике. Задача 1. В треугольнике ABC, описанном около окружности, AB = 8, BC = 5, AC = 4. Точки A 1,В 1 и C 1 - точки касания, принадлежащие соответственно сторонам BC,AC и BA. Точка P - точка пересечения отрезков AA 1 и CC 1. Найдите AP:PA 1. Задача 2. Стороны треугольника 5, 6 и 7. Найдите отношение отрезков, на которые биссектриса большего угла этого треугольника разделена центром окружности, вписанной в треугольник.

Задачи на пропорциональное деление отрезков в треугольнике. Задача 3. В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK = 2:3, а на стороне AC – точка L, делящая AC в отношении AL: LC = 5:3. Точка Q пересечения прямых CK и BL удалена от прямой AB на расстояние 1,5. Найдите длину стороны AB. Задача 4. На стороне AC в треугольнике ABC взята точка K. AK=1, KC = 3. На стороне AB взята точка L. AL:LB=2:3. Q – точка пересечения прямых BK и CL. S = 1. Найдите длину высоты треугольника ABC, опущенной из вершины B.

Задачи, связанные с нахождением площадей Задача 1. Медиана BD и биссектриса AE треугольника ABC пересекаются в точке F. Найти площадь треугольника ABC, если AF=3FE, BD=4, AE=6. Задача 2. На сторонах AB и BC треугольника ABC взяты точки M и N соответственно. Отрезки AN и CM пересекаются в точке L. Площади треугольников AML, CNL и ALC равны соответственно 15, 48 и 40. Найти площадь треугольника ABC.

Комбинированные задачи. Задача 1. На стороне NP квадрата MNPQ взята точка A, а на стороне PQ – точка B так, что NA:AP = PB:BQ = 2:3. Точка L является точкой пересечения отрезков MA и NB. В каком отношении точка L делит отрезок MA? Задача 2. В трапеции ABCD с основаниями AD и BC через точку A проведена прямая, которая пересекает диагональ BD в точке E и боковую сторону CD в точке K, причем BE:ED=1:2, CK:KD=1:4. Найдите отношение длин оснований трапеции.

Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Урок 1. Теорема Менелая и теорема Чевы. Задача. В треугольнике ABC на стороне AC взята точка N так, что AN:NC=m:n, на стороне BC- точка K. BN пересекает AK в точке Q, BQ : QN= p:q. Найти отношение площадей треугольников AKC и ABK. ( т.к. высоты равны) I способ. Дополнительное построение: ND // BC.

II способ. Рассмотрим треугольник BCN и секущую AK. По теореме Менелая

Урок 2. Применение теорем Менелая и Чевы в решении ключевых задач Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Цели урока: 1) формировать умения: -видеть конфигурации, удовлетворяющие заданным условиям; -решать задачи нестандартными способами; -использовать теоремы в задачах на доказательство; 2) развивать самостоятельность.

Задача. В равнобедренном треугольнике ABC (AС=BC) проведены медиана BN и высота АМ, которые пересекаются в точке D. AD=5, DM=2. Найти Решение: AN=NC, AM=5+2=7. Рассмотрим AMC и секущую NB. По теореме Менелая Пусть коэффициент пропорциональности равен k, тогда СМ=3k, BM=2k. Из ACM- прямоугольного: ;,, Ответ:

Применение теорем Менелая и Чевы в решении стереометрических задач. Задача 1. На продолжении ребра АС правильной треугольной пирамиды ABCD с вершиной D взята точка K так, что КА:КС=3:4, а на ребре DC взята точка L так, что DL:LC=2:1. В каком отношении делит объем пирамиды плоскость, проходящая через точки B, L и К? Задача 2. Дана правильная четырехугольная пирамида SABCD с вершиной S. На продолжении ребра CD взята точка M так, что DM=2CD. Через точки М, В и середину ребра SC проведена плоскость. В каком отношении она делит объем пирамиды?

Применение теорем Менелая и Чевы в решении стереометрических задач. Задача 3. Дана правильная треугольная призма с боковыми ребрами AA 1,BB 1 и CC 1. Причем на продолжении ребра BA взята точка M так, что MA=AB. Через точки M,B 1 и середину ребра AC проведена плоскость. В каком отношении она делит объем призмы?

«Умение решать задачи- такое же практическое искусство, как умение плавать или бегать. Ему можно научиться только путем подражания или упражнения» Д.Пойа