Работа ученицы 9Б класса Медведевой Ларисы. Руководитель: Малышева Р. Н.

Презентация:



Advertisements
Похожие презентации
Презентация по теме: «Треугольники» Подготовили Ученицы 9 класса Б Камаретдинова Карина Семёнова Алина.
Advertisements

Треугольники 1.Треугольник. 2.Виды треугольников. 3.Основные линии в треугольнике. 4.Признаки равенства треугольников. 5.Сумма углов треугольника. 6.Внешние.
Треугольник А В С с b a Обозначения: А, В,С – вершины, а так же углы при этих вершинах; a, b, c – стороны, противолежащие углам А, В, С соответственно;
ПОДОБНЫЕ ТРЕУГОЛЬНИКИ © Т.И.Каверина, Пропорциональные отрезки Отношением отрезков AB и CD называется отношение их длин, т.е. Отрезки AB и CD пропорциональны.
Сборник задач по геометрии из открытого банка данных Разработан ученицей 8 «А» класса МБОУ СОШ 3 г. Канска Воробьевой Аленой.
ЗАМЕЧАТЕЛЬНЫЕ ОТРЕЗКИ ТРЕУГОЛЬНИКА Автор: Тивикова Даша 5 класс ГОУ СОШ 1173 Руководитель проекта: Мошнина Ирина Владимировна.
Геометрия 9 класс Многоугольники. Содержание Правильные многоугольники Параллелограмм Прямоугольник Ромб Трапеция Теоремы о площади четырехугольника.
Т Р Е У Г О Л Ь Н И К И Т Р Е У Г О Л Ь Н И К И П Р О Е К Т М К О У Х р е н о в с к а я С О Ш г.
Презентация к уроку по русскому языку (9 класс) на тему: Подготовка к ГИА 2015
По страницам учебника геометрии Многоугольником называется геометрическая фигура, состоящая из n вершин и n сторон.
Треугольники Четырёхугольники Площади фигур Признаки равенства треугольников Признаки равенства прямоугольных треугольников Тригонометрические функции.
І.Любой треугольник A c BD b a L C АВС, a, b, c - стороны 1. b-c< a < b+c. 2. А+В+С = 180°. А, В, С – углы, СBD – внешний, СBD = А + С. 3.Определение.
1.1. Отрезок, соединяющий несоседние вершины многоугольника, называется.
Что означает выражение С 1 С 1 В 1 В 1 А 1 А 1 С В А.
Повторим планиметрию. 1.Аксиомы планиметрии. Аксиомы принадлежности А а А а, В а В Э Э b CD Через две точки можно провести прямую и притом только одну.
Три точки соединенные тремя отрезками образуют фигуру, называемую треугольником.
Повторение за курс базовой школы Преподаватель математики Луцевич Н.А.
1.1. Точка, делящая отрезок пополам, называется ______.
Треугольники Треугольники Выполнила Ибраимова Акмарал Ученица 7«Б» класса.
На тему: «Треугольники» Выполнили: Ученицы 9б класса МСОШ Якубова Анастасия, Симушкина Вероника Руководитель: Радченко Л.А.
Транксрипт:

Работа ученицы 9Б класса Медведевой Ларисы. Руководитель: Малышева Р. Н.

Треугольники Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки -- его сторонами.

Виды треугольников Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника. Треугольник, у которого все стороны равны, называется равносторонним или правильным. А В С

Медиана Медиана треугольника это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны этого треугольника. Свойства медиан треугольника 1.Медиана разбивает треугольник на два треугольника одинаковой площади. 2.Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника. 3.Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса Биссектриса угла это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника Биссектриса угла это геометрическое место точек, равноудаленных от сторон этого угла. Биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегажащим сторонам:. Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.центром окружности, вписанной в этот треугольник.

Высота Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника. Свойства высот треугольника В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.прямоугольном треугольнике подобные В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.остроугольном треугольникеподобные

Срединный перпендикуляр Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку. Свойства серединных перпендикуляров треугольника Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Средняя линия Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. Свойство средней линии треугольника Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. М Е А В С

Признаки равенства треугольников Два треугольника равны, если у них соответственно равны: две стороны и угол между ними; два угла и прилежащая к ним сторона; три стороны.

Признаки равенства прямоугольных треугольников Два прямоугольных треугольника равны, если у них соответственно равны:прямоугольных треугольника гипотенуза и острый угол;гипотенуза катет и противолежащий угол;катет катет и прилежащий угол;катет два катета;катета гипотенуза и катет.гипотенузакатет

Подобие треугольников Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия: два угла одного треугольника равны двум углам другого треугольника; две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны; три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника. В подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.высотымедианыбиссектрисы

Теорема синусов Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности:диаметруописанной около треугольника окружности

Теорема косинусов Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: a2= b2+ c2- 2bc cos (bc)

Произвольный треугольник a, b, c стороны; угол между сторонами a и b; полупериметр; R радиус описанной окружности; r радиус вписанной окружности; S площадь; ha высота, проведенная к стороне a. S = aha S = ab sin α S = pr

Прямоугольный треугольник a, b катеты; c гипотенуза; hc высота, проведенная к стороне c. S = ab S = chc

1.Равносторонний треугольник

Теорема 4.3. В равнобедренном треугольнике углы при основании равны. Доказательство Пусть Δ ABC – равнобедренный с основанием AB. Рассмотрим Δ BAC. По первому признаку эти треугольники равны. Действительно, AC = BC ; BC = AC ; C = C. Отсюда следует A = B как соответствующие углы равных треугольников. Теорема доказана.

Теорема 4.4. Свойство медианы равнобедренного треугольника. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. Рисунок Доказательство Пусть Δ ABC – равнобедренный с основанием AB, и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равнобедренного треугольника (по теореме 4.3), стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезка AB. Отсюда получаем, что Δ ACD = Δ BCD. Из равенства треугольников следует равенство соответствующих углов: ACD = BCD, ADC = BDC. Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника. Теорема доказана. Признаки равнобедренного треугольника.

Теорема 4.5. Если в треугольнике два угла равны, то он равнобедренный. Доказательство Пусть Δ ABC – треугольник, в котором A = B. Δ ABC равен Δ BAC по второму признаку равенства треугольников. Действительно: AB = BA ; B = A ; A = B. Из равенства треугольников следует равенство соответствующих его сторон: AC = BC. Тогда, по определению, Δ ABC – равнобедренный. Теорема доказана.